32 resultados para SEEDLING
em CentAUR: Central Archive University of Reading - UK
Resumo:
Response of cotton (Gossypium hirsutum L. cv. NIAB-78) to salinity, in terms of seed germination, seedling root growth and root Na+ and K+ content was determined in a laboratory experiment. Cotton seeds were exposed to increasing salinity levels using germination water with Sodium chloride concentrations of 0, 50, 100, 150 and 200 mM, to provide different degrees of salt stress. Germinated seeds were counted and roots were harvested at 24, 48, 72 and 96 h after the start of the experiment. It appeared that seed germination was only slightly affected by an increase in salinity (in most cases the differences between treatment were non-significant), whereas root length, root growth rate, root fresh and dry weights were severely affected, generally highly significant differences in these variables were found for comparisons involving most combinations of salinity levels, in particular with increased incubation period. K+ contents decreased with increasing salinity levels, although differences in K+ content were only significant when comparing the control and the 4 salinity levels. Na+ content of the roots increased with increasing levels of NaCl in the germination water, suggesting an exchange of K+ for Na+. The ratio K+/Na+ strongly decreased with rising levels of salinity from around 4.5 for the control to similar to 1 at 200 mM NaCl.
Resumo:
Most modern wheat cultivars contain major dwarfing genes, but their effects on root growth are unclear. Near-isogenic lines (NILs) containing Rht-B1b, Rht-D1b, Rht-B1c, Rht8c, Rht-D1c, and Rht12 were used to characterize the effects of semi-dwarfing and dwarfing alleles on root growth of 'Mercia' and 'Maris Widgeon' wheat cultivars. Wheat seedlings were grown in gel chambers, soil-filled columns, and in the field. Roots were extracted and length and dry mass measured. No significant differences in root length were found between semi-dwarfing lines and the control lines in any experiment, nor was there a significant difference between the root lengths of the two cultivars grown in the field. Total root length of the dwarf lines (Rht-B1c, Rht-D1c, and Rht12) was significantly different from that of the control although the effect was dependent on the experimental methodology; in gel chambers root length of dwarfing lines was increased by; 40% while in both soil media it was decreased (by 24-33%). Root dry mass was 22-30% of the total dry mass in the soil-filled column and field experiments. Root length increased proportionally with grain mass, which varied between NILs, so grain mass was a covariate for the analysis of variance. Although total root length was altered by dwarf lines, root architecture (average root diameter, lateral root: total root ratio) was not affected by reduced height alleles. A direct effect of dwarfing alleles on root growth during seedling establishment, rather than a secondary partitioning effect, was suggested by the present experiments.
Resumo:
A study was conducted in the Department of Plant Breeding and Genetics,Sindh Agriculture University, Tandojam, Pakistan during the year 2009. Sixteen spring wheat cultivars (Triticum aestivum L.) were screened under osmotic stress with three treatments i.e. control-no PEG (polyethylene glycol), 15 percent and 25 percent PEG-6000 solution. The analysis of variance indicated significant differences among treatments for all seedling traits except seed germination percentage. Varieties also differed significantly in germination percentage, coleoptile length, shoot root length, shoot weight, root/shoot ratio and seed vigour index. However, shoot and root weights were non-significant. Significant interactions revealed that cultivars responded variably to osmotic stress treatments; hence provided better opportunity to select drought tolerant cultivars at seedling growth stages. The relative decrease over averages due to osmotic stress was 0.8 percent in seed germination, 53 percent in coleoptile length 62.9 percent in shoot length, 74.4 percent in root length, 50.6 percent in shoot weight, 45.1 percent in root weight, 30.2 percent in root/shoot ratio and 68.5 percent in seed vigour index. However, relative decrease of individual variety for various seedling traits could be more meaningful which indicated that cultivar TD-1 showed no reduction in coleoptile length, while minimum decline was noted in Anmol. For shoot length, cultivar Sarsabz expressed minimum reduction followed by Anmol. However, cultivars Anmol, Moomal, Inqalab-91, and Pavan gave almost equally lower reductions for root length suggesting their higher stress tolerance. In other words, cultivars Anmol, Moomal, Inqalab-91, Sarsabz, TD-1, ZA-77 and Pavan had relatively longer coleoptiles, shoots and roots, and were regarded as drought tolerant. Correlation coefficients among seedlings traits were significant and positive for all traits except germination percentage which had no significant correlation with any of other trait. The results indicated that increase in one trait may cause simultaneous increase in other traits; hence selection for any of these seedling attributes will lead to develop drought tolerant wheat cultivars.
Resumo:
Enhanced understanding of soil disturbance effects on weed seedling recruitment will help guide improved management approaches. Field experiments were conducted at 16 site-years at 10 research farms across Europe and North America to (i) quantify superficial soil disturbance (SSD) effects on Chenopodium album emergence and (ii) clarify adaptive emergence behaviour in frequently disturbed environments. Each site-year contained factorial combinations of two seed populations (local and common, with the common population studied at all site-years) and six SSD timings [0, 50, 100, 150, 200 day-degrees (d°C, base temperature 3°C) after first emergence from undisturbed soil]. Analytical units in this study were emergence flushes. Flush magnitudes (maximum weekly emergence per count flush) and flush frequencies (flushes year 1) were compared between disturbed and undisturbed seedbanks. One year after burial, SSD promoted seedling emergence relative to undisturbed seedbanks by increasing flush magnitude rather than increasing flush frequency. Two years after burial, SSD promoted emergence through increased flush magnitude and flush frequency. The promotional effects of SSD on emergence were strongest within 500 d°C following SSD; however, low levels of SSDinduced emergence were detected as late as 3000 d°C following SSD. Accordingly, stale seedbed practices that eliminate weed seedlings should occur within 500 d°C of disturbance, because few seedlings emerge after this time. However, implementation of stale seedbed practices will probably cause slight increases in weed population densities throughout the year. Compared with the common population, local populations exhibited reduced variance in total emergence measured within sites and across SSD treatments, suggesting that C. album adaptation to local pedo-climatic conditions involves increased consistency in SSD-induced emergence.
Resumo:
Background and Aims Despite recent recognition that (1) plant–herbivore interactions during the establishment phase, (2) ontogenetic shifts in resource allocation and (3) herbivore response to plant volatile release are each pivotal to a comprehensive understanding of plant defence, no study has examined how herbivore olfactory response varies during seedling ontogeny. Methods Using a Y-tube olfactometer we examined snail (Helix aspersa) olfactory response to pellets derived from macerated Plantago lanceolata plants harvested at 1, 2, 3, 4, 5, 6 and 8 weeks of age to test the hypothesis that olfactory selection of plants by a generalist herbivore varies with plant age. Plant volatiles were collected for 10 min using solid-phase microextraction technique on 1- and 8-week-old P. lanceolata pellets and analysed by gas chromatography coupled with a mass spectrometer. Key Results Selection of P. lanceolata was strongly negatively correlated with increasing age; pellets derived from 1-week-old seedlings were three times more likely to be selected as those from 8-week-old plants. Comparison of plant selection experiments with plant volatile profiles from GC/MS suggests that patterns of olfactory selection may be linked to ontogenetic shifts in concentrations of green leaf volatiles and ethanol (and its hydrolysis derivatives). Conclusions Although confirmatory of predictions made by contemporary plant defence theory, this is the first study to elucidate a link between seedling age and olfactory selection by herbivores. As a consequence, this study provides a new perspective on the ontogenetic expression of seedling defence, and the role of seedling herbivores, particularly terrestrial molluscs, as selective agents in temperate plant communities.
Resumo:
Phosphorus (P) deficiency is a major problem for Australian agriculture. Development of new perennial pasture legumes that acquire or use P more efficiently than the current major perennial pasture legume, lucerne (Medicago sativa L.), is urgent. A glasshouse experiment compared the response of ten perennial herbaceous legume species to a series of P supplies ranging from 0 to 384 µg g−1 soil, with lucerne as the control. Under low-P conditions, several legumes produced more biomass than lucerne. Four species (Lotononis bainesii Baker, Kennedia prorepens F.Muell, K. prostrata R.Br, Bituminaria bituminosa (L.) C.H.Stirt) achieved maximum growth at 12 µg P g−1 soil, while other species required 24 µg P g−1. In most tested legumes, biomass production was reduced when P supply was ≥192 µg g−1, due to P toxicity, while L. bainesii and K. prorepens showed reduced biomass when P was ≥24 µg g−1 and K. prostrata at ≥48 µg P g−1 soil. B. bituminosa and Glycine canescens F.J.Herm required less soil P to achieve 0.5 g dry mass than the other species did. Lucerne performed poorly with low P supply and our results suggest that some novel perennial legumes may perform better on low-P soils.
Resumo:
We predicted that P-fertiliser residues will limit the establishment of native plant species and their mycorrhizas to old-fields in the wheat-growing region (i.e. the wheatbelt) of Western Australia. To test this prediction, we assessed the growth and P uptake of seedlings of three native plant species to phosphate addition and inoculation with arbuscular mycorrhizas (AM) in a pot study. The native plant species were Acacia acuminata Benth. (Mimosaceae), Eucalyptus loxophleba Benth. subsp. loxophleba (Myrtaceae) and Hakea preissii Meisn. (Proteaceae); and each pot contained one seedling. P was added to field soil to mimic pre-agricultural (P0), old-field (P1) and 10 times old-field (P10) soils. AM inoculant, which was a mix of Scutellospora calospora (Nicolson and Gerdemann) Walker and Sanders, Glomus intraradices Schenck and Smith and Glomus mosseae (Nicolson and Gerdemann) Gerdemann and Trappe, was added to half of the pots. After 12 weeks, the biomass and P uptake of the mycorrhizal A. acuminata were greater than those of the non-mycorrhizal plants across all P treatments. Plant biomass decreased significantly with increasing P addition, yet this species was apparently unable to suppress its mycorrhizal colonisation at high P despite this reduction in growth. In contrast, mycorrhizal and non-mycorrhizal E. loxophleba subsp. loxophleba were of a similar biomass after 12 weeks; maximum biomass was attained at intermediate (old-field) levels of P. P uptake increased with increasing P supply, beyond that required to attain maximum biomass. AM did not form on H. preissii. P uptake increased with increasing P supply for this species also. Overall, it is the apparent inability of these species to down-regulate P uptake rather than a lack of mycorrhizal symbiosis that will constrain their establishment on wheatbelt old-fields.
Resumo:
Climatic and land use changes have significant consequences for the distribution of tree species, both through natural dispersal processes and following management prescriptions. Responses to these changes will be expressed most strongly in seedlings near current species range boundaries. In northern temperate forest ecosystems, where changes are already being observed, ectomycorrhizal fungi contribute significantly to successful tree establishment. We hypothesised that communities of fungal symbionts might therefore play a role in facilitating, or limiting, host seedling range expansion. To test this hypothesis, ectomycorrhizal communities of interior Douglas-fir and interior lodgepole pine seedlings were analysed in a common greenhouse environment following growth in five soils collected along an ecosystem gradient. Currently, Douglas-fir’s natural distribution encompasses three of the five soils, whereas lodgepole pine’s extends much further north. Host filtering was evident amongst the 29 fungal species encountered: 7 were shared, 9 exclusive to Douglas-fir and 13 exclusive to lodgepole pine. Seedlings of both host species formed symbioses with each soil fungal community, thus Douglas-fir did so even where those soils came from outside its current distribution. However, these latter communities displayed significant taxonomic and functional differences to those found within the host distribution, indicative of habitat filtering. In contrast, lodgepole pine fungal communities displayed high functional similarity across the soil gradient. Taxonomic and/or functional shifts in Douglas-fir fungal communities may prove ecologically significant during the predicted northward migration of this species; especially in combination with changes in climate and management operations, such as seed transfer across geographical regions for forestry purposes.
Resumo:
Background and Aims Root traits can be selected for crop improvement. Techniques such as soil excavations can be used to screen root traits in the field, but are limited to genotypes that are well-adapted to field conditions. The aim of this study was to compare a low-cost, high-throughput root phenotyping (HTP) technique in a controlled environment with field performance, using oilseed rape (OSR; Brassica napus) varieties. Methods Primary root length (PRL), lateral root length and lateral root density (LRD) were measured on 14-d-old seedlings of elite OSR varieties (n = 32) using a ‘pouch and wick’ HTP system (∼40 replicates). Six field experiments were conducted using the same varieties at two UK sites each year for 3 years. Plants were excavated at the 6- to 8-leaf stage for general vigour assessments of roots and shoots in all six experiments, and final seed yield was determined. Leaves were sampled for mineral composition from one of the field experiments. Key Results Seedling PRL in the HTP system correlated with seed yield in four out of six (r = 0·50, 0·50, 0·33, 0·49; P < 0·05) and with emergence in three out of five (r = 0·59, 0·22, 0·49; P < 0·05) field experiments. Seedling LRD correlated positively with leaf concentrations of some minerals, e.g. calcium (r = 0·46; P < 0·01) and zinc (r = 0·58; P < 0·001), but did not correlate with emergence, general early vigour or yield in the field. Conclusions Associations between PRL and field performance are generally related to early vigour. These root traits might therefore be of limited additional selection value, given that vigour can be measured easily on shoots/canopies. In contrast, LRD cannot be assessed easily in the field and, if LRD can improve nutrient uptake, then it may be possible to use HTP systems to screen this trait in both elite and more genetically diverse, non-field-adapted OSR.
Resumo:
The mechanisms of long-term adaptation to low oxygen environment are quite well studied, but little is known about the sensing of oxygen shortage, the signal transduction and the short-term effects of hypoxia in plant cells. We have found that an RNA helicase eIF4A-III, a putative component of the Exon Junction Complex, rapidly changes its pattern of localisation in the plant nucleus under hypoxic conditions. In normal cell growth conditions GFP- eIF4A-III was mainly nucleoplasmic, but in hypoxia stress conditions it moved to the nucleolus and splicing speckles. This transition occurred within 15-20 min in Arabidopsis culture cells and seedling root cells, but took more than 2 h in tobacco BY-2 culture cells. Inhibition of respiration, transcription or phosphorylation in cells and ethanol treatment had similar effects to hypoxia. The most likely consequence is that a certain mRNA population will remain bound to the eIF4A-III and other mRNA processing proteins, rather than being transported from the nucleus to the cytoplasm, and thus its translation will be suspended.
Resumo:
1 Adaptation of plant populations to local environments has been shown in many species but local adaptation is not always apparent and spatial scales of differentiation are not well known. In a reciprocal transplant experiment we tested whether: (i) three widespread grassland species are locally adapted at a European scale; (ii) detection of local adaptation depends on competition with the local plant community; and (iii) local differentiation between neighbouring populations from contrasting habitats can be stronger than differentiation at a European scale. 2 Seeds of Holcus lanatus, Lotus corniculatus and Plantago lanceolata from a Swiss, Czech and UK population were sown in a reciprocal transplant experiment at fields that exhibit environmental conditions similar to the source sites. Seedling emergence, survival, growth and reproduction were recorded for two consecutive years. 3 The effect of competition was tested by comparing individuals in weeded monocultures with plants sown together with species from the local grassland community. To compare large-scale vs. small-scale differentiation, a neighbouring population from a contrasting habitat (wet-dry contrast) was compared with the 'home' and 'foreign' populations. 4 In P. lanceolata and H. lanatus, a significant home-site advantage was detected in fitness-related traits, thus indicating local adaptation. In L. corniculatus, an overall superiority of one provenance was found. 5 The detection of local adaptation depended on competition with the local plant community. In the absence of competition the home-site advantage was underestimated in P. lanceolata and overestimated in H. lanatus. 6 A significant population differentiation between contrasting local habitats was found. In some traits, this small-scale was greater than large-scale differentiation between countries. 7 Our results indicate that local adaptation in real plant communities cannot necessarily be predicted from plants grown in weeded monocultures and that tests on the relationship between fitness and geographical distance have to account for habitat-dependent small-scale differentiation. Considering the strong small-scale differentiation, a local provenance from a different habitat may not be the best choice in ecological restoration if distant populations from a more similar habitat are available.
Resumo:
Genetic and environmental factors interact to determine the growth and activity of crop root systems. This paper examines the effects of agronomic management and genotype on wheat root systems in the UK and Australia, and suggests ways in which root limitations to crop performance might be alleviated. In a field study in the UK which examined late-season growth and activity, fungicide maintained the size of the root system during early grain-filling, and there were significant differences between cultivars in root distribution with depth below 0.3 m. Shamrock had a longer root system below 0.3 m than varieties such as Hereward and Consort. Fungicide significantly increased root growth at 0.1-0.2 m in one season. In Australia, a wheat line selected for high shoot vigour had associated root vigour during early seedling growth but the effect on root growth did not persist. The results provide examples of genotypic differences in wheat root growth under field conditions which interact with agronomic management in ways which can be exploited to benefit growth and yield in diverse environments.
Resumo:
Neem leaves, neem cake (a by-product left after the extraction of oil from neem seed) and a commercially refined product aza (azadirachtin) extracted from seed were evaluated. Aqueous extracts of crude neem formulations used as a seedling dip treatment significantly reduced the number of females and egg masses in roots whereas the refined one did not. A split-root technique was used to demonstrate the translocation of active compounds within a plant and their subsequent effect on the development of nematodes. When applied to the root portion all formulations significantly reduced the number of egg masses and eggs per egg mass. Whereas on the untreated root portion, neem cake at 3% w/w and aza at 0.1% w/w significantly reduced the number of egg masses as compared with neem leaves at 3% w/w, aza at 0.05% and control. All the neern formulations significantly reduced the number of eggs per egg mass on' the untreated root portion. The effect of neem leaves and cake on the development of root-knot nematodes was tested at 2, 4, 6, 8, and 16 weeks after their application to soil. Even after 16 weeks all the treatments significantly reduced the galling index and number of egg masses but their effectiveness declined over time. After storing neem leaves, cake and aza for 8 months under ambient conditions the efficacy of neem leaves and aza, against root-knot nematodes, remained stable whereas that of cake declined. (c) 2006 Elsevier Ltd. All rights reserved.