36 resultados para SAMALL ANGLE SCATTERING

em CentAUR: Central Archive University of Reading - UK


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Although extensively studied within the lidar community, the multiple scattering phenomenon has always been considered a rare curiosity by radar meteorologists. Up to few years ago its appearance has only been associated with two- or three-body-scattering features (e.g. hail flares and mirror images) involving highly reflective surfaces. Recent atmospheric research aimed at better understanding of the water cycle and the role played by clouds and precipitation in affecting the Earth's climate has driven the deployment of high frequency radars in space. Examples are the TRMM 13.5 GHz, the CloudSat 94 GHz, the upcoming EarthCARE 94 GHz, and the GPM dual 13-35 GHz radars. These systems are able to detect the vertical distribution of hydrometeors and thus provide crucial feedbacks for radiation and climate studies. The shift towards higher frequencies increases the sensitivity to hydrometeors, improves the spatial resolution and reduces the size and weight of the radar systems. On the other hand, higher frequency radars are affected by stronger extinction, especially in the presence of large precipitating particles (e.g. raindrops or hail particles), which may eventually drive the signal below the minimum detection threshold. In such circumstances the interpretation of the radar equation via the single scattering approximation may be problematic. Errors will be large when the radiation emitted from the radar after interacting more than once with the medium still contributes substantially to the received power. This is the case if the transport mean-free-path becomes comparable with the instrument footprint (determined by the antenna beam-width and the platform altitude). This situation resembles to what has already been experienced in lidar observations, but with a predominance of wide- versus small-angle scattering events. At millimeter wavelengths, hydrometeors diffuse radiation rather isotropically compared to the visible or near infrared region where scattering is predominantly in the forward direction. A complete understanding of radiation transport modeling and data analysis methods under wide-angle multiple scattering conditions is mandatory for a correct interpretation of echoes observed by space-borne millimeter radars. This paper reviews the status of research in this field. Different numerical techniques currently implemented to account for higher order scattering are reviewed and their weaknesses and strengths highlighted. Examples of simulated radar backscattering profiles are provided with particular emphasis given to situations in which the multiple scattering contributions become comparable or overwhelm the single scattering signal. We show evidences of multiple scattering effects from air-borne and from CloudSat observations, i.e. unique signatures which cannot be explained by single scattering theory. Ideas how to identify and tackle the multiple scattering effects are discussed. Finally perspectives and suggestions for future work are outlined. This work represents a reference-guide for studies focused at modeling the radiation transport and at interpreting data from high frequency space-borne radar systems that probe highly opaque scattering media such as thick ice clouds or precipitating clouds.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Magnetic clouds are a subset of interplanetary coronal mass ejections characterized by a smooth rotation in the magnetic field direction, which is interpreted as a signature of a magnetic flux rope. Suprathermal electron observations indicate that one or both ends of a magnetic cloud typically remain connected to the Sun as it moves out through the heliosphere. With distance from the axis of the flux rope, out toward its edge, the magnetic field winds more tightly about the axis and electrons must traverse longer magnetic field lines to reach the same heliocentric distance. This increased time of flight allows greater pitch-angle scattering to occur, meaning suprathermal electron pitch-angle distributions should be systematically broader at the edges of the flux rope than at the axis. We model this effect with an analytical magnetic flux rope model and a numerical scheme for suprathermal electron pitch-angle scattering and find that the signature of a magnetic flux rope should be observable with the typical pitch-angle resolution of suprathermal electron data provided ACE's SWEPAM instrument. Evidence of this signature in the observations, however, is weak, possibly because reconnection of magnetic fields within the flux rope acts to intermix flux tubes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Suprathermal electrons (>70 eV) form a small fraction of the total solar wind electron density but serve as valuable tracers of heliospheric magnetic field topology. Their usefulness as tracers of magnetic loops with both feet rooted on the Sun, however, most likely fades as the loops expand beyond some distance owing to scattering. As a first step toward quantifying that distance, we construct an observationally constrained model for the evolution of the suprathermal electron pitch-angle distributions on open field lines. We begin with a near-Sun isotropic distribution moving antisunward along a Parker spiral magnetic field while conserving magnetic moment, resulting in a field-aligned strahl within a few solar radii. Past this point, the distribution undergoes little evolution with heliocentric distance. We then add constant (with heliocentric distance, energy, and pitch angle) ad-hoc pitch-angle scattering. Close to the Sun, pitch-angle focusing still dominates, again resulting in a narrow strahl. Farther from the Sun, however, pitch-angle scattering dominates because focusing is effectively weakened by the increasing angle between the magnetic field direction and intensity gradient, a result of the spiral field. We determine the amount of scattering required to match Ulysses observations of strahl width in the fast solar wind, providing an important tool for inferring the large-scale properties and topologies of field lines in the interplanetary medium. Although the pitch-angle scattering term is independent of energy, time-of-flight effects in the spiral geometry result in an energy dependence of the strahl width that is in the observed sense although weaker in magnitude.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The self-assembly in aqueous solution of a PEG-peptide conjugate is studied by spectroscopy, electron microscopy, rheology and small-angle Xray and neutron scattering (SAXS and SANS). The peptide fragment, FFKLVFF is based on fragment KLVFF of the amyloid beta-peptide, A beta(16-20), extended by two hydrophobic phenylalanine units. This is conjugated to PEG which confers water solubility and leads to distinct self-assembled structures. Small-angle scattering reveals the formation of cylindrical fibrils comprising a peptide core and PEG corona. This constrained structure leads to a model parallel beta-sheet self-assembled structure with a radial arrangement of beta sheets. Oil increasing concentration, successively nematic and hexagonal columnar phases are formed. The flow-induced alignment of both structures was studied in situ by SANS using a Couette cell. Shear-induced alignment is responsible for the shear thinning behaviour observed by dynamic shear rheometry. Incomplete recovery of moduli after cessation of shear is consistent with the observation from SANS of retained orientation in the sample.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The structure and flow behaviour of binary mixtures of Pluronic block copolymers P85 and P123 is investigated by small-angle scattering, rheometry and mobility tests. Micelle dimensions are probed by dynamic light scattering. The micelle hydrodynamic radius for the 50/50 mixture is larger than that for either P85 or P123 alone, Clue to the formation of mixed micelles with a higher association number. The phase diagram for 50/50 mixtures contains regions Of Cubic and hexagonal phases similar to those for the parent homopolymers, however the region of stability of the cubic phase is enhanced at low temperature and concentrations above 40 wt%. This is ascribed to favourable packing of the mixed micelles containing core blocks with two different chain lengths, but similar corona chain lengths. The shear flow alignment of face-centred cubic and hexagonal phases is probed by in situ small-angle X-ray or neutron scattering with simultaneous rheology. The hexagonal phase can be aligned using steady shear in a Couette geometry, however the high modulus Cubic phase cannot be aligned well in this way. This requires the application of oscillatory shear or compression. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pitch-angle scattering of electrons can limit the stably trapped particle flux in the magnetosphere and precipitate energetic electrons into the ionosphere. Whistler-mode waves generated by a temperature anisotropy can mediate this pitch-angle scattering over a wide range of radial distances and latitudes, but in order to correctly predict the phase-space diffusion, it is important to characterise the whistler-mode wave distributions that result from the instability. We use previously-published observations of number density, pitch-angle anisotropy and phase space density to model the plasma in the quiet pre-noon magnetosphere (defined as periods when AE<100nT). We investigate the global propagation and growth of whistler-mode waves by studying millions of growing ray paths and demonstrate that the wave distribution at any one location is a superposition of many waves at different points along their trajectories and with different histories. We show that for observed electron plasma properties, very few raypaths undergo magnetospheric reflection, most rays grow and decay within 30 degrees of the magnetic equator. The frequency range of the wave distribution at large L can be adequately described by the solutions of the local dispersion relation, but the range of wavenormal angle is different. The wave distribution is asymmetric with respect to the wavenormal angle. The numerical results suggest that it is important to determine the variation of magnetospheric parameters as a function of latitude, as well as local time and L-shell.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Measurements from ground-based magnetometers and riometers at auroral latitudes have demonstrated that energetic (~30-300keV) electron precipitation can be modulated in the presence of magnetic field oscillations at ultra-low frequencies. It has previously been proposed that an ultra-low frequency (ULF) wave would modulate field and plasma properties near the equatorial plane, thus modifying the growth rates of whistler-mode waves. In turn, the resulting whistler-mode waves would mediate the pitch-angle scattering of electrons resulting in ionospheric precipitation. In this paper, we investigate this hypothesis by quantifying the changes to the linear growth rate expected due to a slow change in the local magnetic field strength for parameters typical of the equatorial region around 6.6RE radial distance. To constrain our study, we determine the largest possible ULF wave amplitudes from measurements of the magnetic field at geosynchronous orbit. Using nearly ten years of observations from two satellites, we demonstrate that the variation in magnetic field strength due to oscillations at 2mHz does not exceed ±10% of the background field. Modifications to the plasma density and temperature anisotropy are estimated using idealised models. For low temperature anisotropy, there is little change in the whistler-mode growth rates even for the largest ULF wave amplitude. Only for large temperature anisotropies can whistler-mode growth rates be modulated sufficiently to account for the changes in electron precipitation measured by riometers at auroral latitudes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A novel capillary flow device has been developed and applied to study the orientation of worm-like micelles, among other systems. Small-angle X-ray scattering (SAXS) data from micelles formed by a Pluronic block copolymer in aqueous salt solution provides evidence for the formation of worm-like micelles, which align under flow. A transition from a rod-like form factor to a less persistent conformation is observed under flow. Flow alignment of worm-like micelles formed by the low molar mass amphiphile system cetyl pyridinium chloride+sodium salicylate is studied for comparative purposes. Here, inhomogenous flow at the micron scale is revealed by streaks in the small-angle light scattering pattern perpendicular to the flow direction. Copyright (c) 2006 John Wiley & Sons, Ltd.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We study the effects of hydrostatic pressure (P) on aqueous solutions and gels of the block copolymer B20E610 (E, oxyethylene; B, oxybutylene; subscripts, number of repeats), by performing simultaneous small angle neutron scattering/pressure experiments. Micellar cubic gels were studied for 9.5 and 4.5 wt% B20E610 at T = 20-80 and 35-55 degrees C, respectively, while micellar isotropic solutions where Studied for 4.5 wt% B20E610 at T > 55 degrees C. We observed that the interplanar distance d(110) (cubic unit cell parameter a = root 2d(110)) decreases while the correlation length of the Cubic order (delta) increases, upon increasing P at a fixed T for 9.5 wt% B20E610. The construction of master Curves for d(110) and delta corresponding to 9.5 wt% B20E610 proved the correlation between changes in T and P. Neither d(110) and delta nor the cubic-isotropic phase transition temperature was affected by the applied pressure for 4.5 wt% B20E610. The dramatic contrast between the pressure-induced behavior observed for 9.5 and 4.5 wt% B20E610 suggests that pressure induced effects might be more effectively transmitted through samples that present wider domains of cubic structure order (9.5 wt% compared to 4.5 wt% B20E610).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

WThe capillary flow alignment of the thermotropic liquid crystal 4-n-octyl-4′-cyanobiphenyl in the nematic and smectic phases is investigated using time-resolved synchrotron small-angle x-ray scattering. Samples were cooled from the isotropic phase to erase prior orientation. Upon cooling through the nematic phase under Poiseuille flow in a circular capillary, a transition from the alignment of mesogens along the flow direction to the alignment of layers along the flow direction (mesogens perpendicular to flow) appears to occur continuously at the cooling rate applied. The transition is centered on a temperature at which the Leslie viscosity coefficient α3 changes sign. The configuration with layers aligned along the flow direction is also observed in the smectic phase. The transition in the nematic phase on cooling has previously been ascribed to an aligning-nonaligning or tumbling transition. At high flow rates there is evidence for tumbling around an average alignment of layers along the flow direction. At lower flow rates this orientation is more clearly defined. The layer alignment is ascribed to surface-induced ordering propagating into the bulk of the capillary, an observation supported by the parallel alignment of layers observed for a static sample at low temperatures in the nematic phase.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Electrospinning is a technique employed to produce nanoscale to microscale sized fibres by the application of a high voltage to a spinneret containing a polymer solution. Here we examine how small angle neutron scattering data can be modelled to analyse the polymer chain conformation. We prepared 1:1 blends of deuterated and hydrogenated atactic-polystyrene fibres from solutions in N, N-Dimethylformamide and Methyl Ethyl Ketone. The fibres themselves often contain pores or voiding within the internal structure on the length scales that can interfere with scattering experiments. A model to fit the scattering data in order to obtain values for the radius of gyration of the polymer molecules within the fibres has been developed, that includes in the scattering from the voids. Using this model we find that the radius of gyration is 20% larger than in the bulk state and the chains are slightly extended parallel to the fibre axis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The paper presents an analysis of WAXS (wide-angle X-ray scattering) data which aids an understanding of the structure of non-crystalline polymers. Experimental results are compared with calculations of scattering from possible models. Evidence is presented which supports the view that the chains in molten PE do not lie parallel but have a conformation in accord with the predictions of energy calculations. However, the evidence indicates that in “molten” PTFE the chains lie parallel over distances well in excess of their diameters. WAXS-based proposals are made for the conformations of a-PMMA and a-PS.