105 resultados para Ruthenium(II) arene complexes

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sixteen neutral mixed ligand thiosemicarbazone complexes of ruthenium having general formula [Ru(PPh3)(2)L-2], where LH = 1-(arylidine)4-aryl thiosemicarbazones, have been synthesized and characterized. All complexes are diamagnetic and hence ruthenium is in the +2 oxidation state (low-spin d(6), S = 0). The complexes show several intense peaks in the visible region due to allowed metal to ligand charge transfer transitions. The structures of four of the complexes have been determined by single-crystal X-ray diffraction and they show that thiosemicarbazone ligands coordinate to the ruthenium center through the hydrazinic nitrogen and sulfur forming four-membered chelate rings with ruthenium in N2S2P2 coordination environment. In dichloromethane solution, the complexes show two quasi-reversible oxidative responses corresponding to loss of electron from HOMO and HOMO - 1. The E-0 values of the above two oxidations shows good linear relationship with Hammett substituents constant (sigma) as well as with the HOMO energy of the molecules calculated by the EHMO method. A DFT calculation on one representative complex suggests that there is appreciable contribution of the sulfur p-orbitals to the HOMO and HOMO - 1. Thus, assignment of the oxidation state of the metal in such complexes must be made with caution. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Six ruthenium(II) complexes have been prepared using the tridentate ligands 2,6-bis(benzimidazolyl) pyridine and bis(2-benzimidazolyl methyl) amine and having 2,2'-bipyridine, 2,2':6',2 ''-terpyridine, PPh3, MeCN and chloride as coligands. The crystal structures of three of the complexes trans-[Ru(bbpH(2))(PPh3)(2)(CH3CN)I(ClO4)(2) center dot 2H(2)O (2), [Ru(bbpH(2))(bpy)Cl]ClO4 (3) and [Ru(bbpH(2))(terpy)](ClO4)(2) (4) are also reported. The complexes show visible region absorption at 402-517 nm, indicating that it is possible to tune the visible region absorption by varying the ancillary ligand. Luminescence behavior of the complexes has been studied both at RT and at liquid nitrogen temperature (LNT). Luminescence of the complexes is found to be insensitive to the presence of dioxygen. Two of the complexes [Ru(bbpH(2))(bpy)Cl]ClO4 (3) and [Ru(bbpH(2))(terpy]ClO4)(2) (4) show RT emission in the NIR region, having lifetime, quantum yield and radiative constant values suitable for their application as NIR emitter in the solid state devices. The DFT calculations on these two complexes indicate that the metal t(2g) electrons are appreciably delocalized over the ligand backbone. (C) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three new ruthenium complexes of the formulae cis-[Ru(PPh3)(2)(BzTscbz)(2)] (1a), [Ru-2(PPh3)(2)(BzTscbz)(4)] (1b) and [Ru(PPh3)(2)(BzTscHbz)(2)](ClO4)(2) (2) [BzTscHbz = 4-(phenyl) thiosemicarbazone of benzaldehyde] have been synthesized and characterized by various physicochemical methods including X-ray structure determinations for 1a and 1b. The relative stabilities of the four-membered versus five-membered chelate rings formed by the deprotonated ligand BzTscbz are discussed on the basis of the experimental results and some semi-empirical as well as DFT calculations. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of isoelectronic replacement of a neutral nitrogen donor atom by an anionic carbon atom in terpyridine ruthenium(II) complexes on the electronic and photophysical properties of the resulting N,C,N'- and C,N,N'-cyclometalated aryl ruthenium(II) complexes were investigated. To this end, a series of complexes was prepared either with ligands containing exclusively nitrogen donor atoms, that is, [Ru(R-1-tpy)(R-2-tpy)](2+) (R-1, R-2 = H, CO2Et), or bearing either one N,C,N'- or C,N,N'-cyclometalated ligand and one tpy ligand, that is, [Ru(R-1-(NCN)-C-Lambda-N-Lambda)(R-2-tpy)](+) and [Ru(R-1-(CNN)-N-Lambda-N-Lambda)(R-2-tpy)](+), respectively. Single-crystal X-ray structure determinations showed that cyclometalation does not significantly alter the overall geometry of the complexes but does change the bond lengths around the ruthenium(II) center, especially the nitrogen-to-ruthenium bond length trans to the carbanion. Substitution of either of the ligands with electron-withdrawing ester functionalities fine-tuned the electronic properties and resulted in the presence of an IR probe. Using trends obtained from redox potentials, emission energies, IR spectroelectrochemical responses, and the character of the lowest unoccupied molecular orbitals from DFT studies, it is shown that the first reduction process and luminescence are associated with the ester-substituted C,N,N'-cyclometalated ligand in [Ru(EtO2C-(CNN)-N-Lambda-N-Lambda)(tpy)](+). Cyclometalation in an N,C,N'-bonding motif changed the energetic order of the ruthenium d(zx), d(yz), and d(xy) orbitals. The red-shifted absorption in the N,C,N'-cyclometalated complexes is assigned to MLCT transitions to the tpy ligand. The red shift observed upon introduction of the ester moiety is associated with an increase in intensity of low-energy transitions, rather than a red shift of the main transition. Cyclometalation in the C,N,N'-binding motif also red-shifts the absorption, but the corresponding transition is associated with both ligand types. Luminescence of the cyclometalated complexes is relatively independent of the mode of cyclometalation, obeying the energy gap law within each individual series.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two homometallic complexes containing two and three ruthenium polypyridyl units linked by amino acid lysine (Lys) and the related dipeptide (LysLys) were synthesized and their electrochemical, spectroscopic, and electrochemiluminescence (ECL) properties were investigated. The electrochemical and photophysical data indicate that the two metal complexes largely retain the electronic properties of the reference compound for the separate ruthenium moieties in the two bridged complexes, [4-carboxypropyl-4'-methyl-2,2'-bipyridine]bis(2,2'-bipyridine)ruthenium(II) complex. The ECL studies, performed in aqueous media in the presence of tri-n-propylamine as co-reactant, show that the ECL intensity increases by 30% for the dinuclear and trinuclear complexes compared to the reference. Heterogeneous ECL immunoassay studies, performed on larger dendritic complexes containing up to eight ruthenium units, demonstrate that limitations due to the slow diffusion can easily be overcome by means of nanoparticle technology. In this case, the ECL signal is proportional to the number of ruthenium units. Multimetallic systems with several ruthenium centers may, however, undergo nonspecific bonding,to streptavidin-coated particles or to antibodies, thereby increasing the background ECL intensity and lowering the sensitivity of the immunoassay.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The reaction of cis-[RuCl2(dmso)(4)] with [6-(2-pyridinyl)-5,6-dihydrobenzimidazo[1,2-c] quinazoline] (L) afforded in pure form a blue ruthenium(II) complex, [Ru(L-1)(2)] (1), where the original L changed to [2-(1H-benzoimidazol-2-yl)-phenyl]-pyridin-2-ylmethylene-amine (HL1). Treatment of RuCl3 center dot 3H(2)O with L in dry tetrahydrofuran in inert atmosphere led to a green ruthenium(II) complex, trans-[RuCl2(L-2)(2)] (2), where L was oxidized in situ to the neutral species 6-pyridin-yl-benzo[4,5]imidazo[1,2-c] quinazoline (L-2). Complex 2 was also obtained from the reaction of RuCl3 center dot 3H(2)O with L-2 in dry ethanol. Complexes 1 and 2 have been characterized by physico-chemical and spectroscopic tools, and 1 has been structurally characterized by single-crystal X-ray crystallography. The electrochemical behavior of the complexes shows the Ru(III)/Ru(II) couple at different potentials with quasi-reversible voltammograms. The interaction of these complexes with calf thymus DNA by using absorption and emission spectral studies allowed determination of the binding constant K-b and the linear Stern-Volmer quenching constant K-SV

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nine of the compounds [M(L2−)(p-cymene)] (M = Ru, Os, L2− = 4,6-di-tert-butyl-N-aryl-o-amidophenolate) were prepared and structurally characterized (Ru complexes) as coordinatively unsaturated, formally 16 valence electron species. On L2−-ligand based oxidation to EPR-active iminosemiquinone radical complexes, the compounds seek to bind a donor atom (if available) from the N-aryl substituent, as structurally certified for thioether and selenoether functions, or from the donor solvent. Simulated cyclic voltammograms and spectroelectrochemistry at ambient and low temperatures in combination with DFT results confirm a square scheme behavior (ECEC mechanism) involving the Ln ligand as the main electron transfer site and the metal with fractional (δ) oxidation as the center for redox-activated coordination. Attempts to crystallize [Ru(Cym)(QSMe)](PF6) produced single crystals of [RuIII(QSMe •−)2](PF6) after apparent dissociation of the arene ligand.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Photosensitized oxidation of guanine is an important route to DNA damage. Ruthenium polypyridyls are very useful photosensitizers as their reactivity and DNA-binding properties are readily tunable. Here we show a strong difference in the reactivity of the two enantiomers of [Ru(TAP)2(dppz)]2+, by using time-resolved visible and IR spectroscopy. This reveals that the photosensitized one-electron oxidation of guanine in three oligonucleotide sequences proceeds with similar rates and yields for bound delta-[Ru(TAP)2(dppz)]2+, whereas those for the lambda enantiomer are very sensitive to base sequence. It is proposed that these differences are due to preferences of each enantiomer for different binding sites in the duplex.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Blue [{Cu(2,2'-bipy)(2)}(2){alpha-SiW12O40}] (bipy = bipyridyl) (1) and pale yellow [Mn(2,2'-bipy)(3)](2)[alpha-SiW12O40] (2) have been synthesized hydrothermally and characterized by IR spectroscopy and single crystal X-ray structure analysis. In 1, the [alpha-SiW12O40](4-) ion acts as a bridge between the two [{Cu(2,2'-bipy)(2)](2+) moieties via coordination through the terminal oxygen atoms, while in 2, the [Mn(2,2'-bipy)(3)](2+) ion balances the charge on the polyoxo anion without forming any covalent bond. To the best of our knowledge, this is the first example of transition metal-mediated transformation of [alpha-SiW9O34](10-) to [alpha-SiW12O40](4-).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two linear, trinuclear mixed-valence complexes, [Co-II{(mu-L-1)(mu-OAc)Co-III (OAc)}(2)] (1) and [Co-II(mu-L-2) (mu-OAc)Co-III(OAc)}(2)] (2) and two mononuclear Con' complexes [Co-III{L-3)(OAc)] (3), and [Co-III {L-4}(OAc)] (4) were prepared and the molecular structures of 1, 2 and 4 elucidated on the basis of X-ray crystallography [OAc = Acetate ion, H2L1 = H(2)Salen 1,6-bis(2-hydroxyphenyl)-2,5-diazahexa-1,5-diene, H2L2 H2Me2-Salen = 2,7-bis(2-hydroxyphenyl)-2,6-diazaocta-2,6-diene, H2L3 = H(2)Salpn = 1,7-bis(2-hydroxyphenyl)-2,6-diazahepta1,6-diene, H2L4 = H(2)Me(2)Salpn = 2,8-bis(2-hydroxyphenyl)3,7-diazanona-2,7-dienel. In complexes I and 2, the acetate groups show both monodentate and bridging bidentate coordination modes, whereas chelating bidentate acetate is present in 4. The terminal (CoN2O4)-N-III centres in 1 and 2 exhibit uniform facial arrangements of both non-bridged N2O and bridging O-3 donor sets and the Co-II centre is coordinated to six (four phenoxo and two acetato) oxygen atoms of the bridging ligands. The effective magnetic moment at room temperature corresponds to the presence of high-spin Coll in both 1 and 2. The complexes 1 and 2 are thus Co-III(S = 0)Co-II(S = 3/2)-Co-II(S = 0) trimers. Complexes 3 and 4 are monomeric and diamagnetic containing low-spin Co-III(S = 0) with chelating tetradentate Schiff base and bidentate acetate. Calculations based on DFT rationalise the formation of trinuclear or monomiclear complexes. (C) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2008).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two tridentate N,N,O donor Schiff bases, HL1 (4-(2-ethylamino-ethylimino)-pentan-2-one) and HL2 (3-(2-amino-propylimino)-1-phenyl-butan-1-one) on reaction with Cu-II acetate in presence of triethyl amine yielded two basal-apical, mono-atomic acetate oxygen-bridging dimeric copper(II) complexes, [Cu2L21(OAc)(2)] (1), [Cu2L22(OAc)(2)] (2). Whereas two other similar tridentate ligands HL3 (4-(2-amino-propylimino)-pentane-2-one) and HL3 (3-(2-amino-ethylimino)-1-phenyl-butan-1-one) under the same conditions produced a mixture of the corresponding dinners and a one-dimensional alternating chain of the dimer and copper acetate moiety, [Cu4L23(OAc)(6)](n) (3) and [Cu4L24(OAc)(6)](n) (4), formed by a very rare mu(3) bridging mode of the acetate ion. All four complexes (1-4) have been characterized by X-ray crystallography. The isotropic Hamiltonian, H = -JS(1)S(2) has been used to interpret the magnetic data. Magnetic measurements of 1 and 2 in the temperature range 2-300 K reveal a very weak antiferromagnetic coupling for both complexes U = -0.56 and -1.19 cm(-1) for 1 and 2, respectively). (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three new copper(II) complexes [(CuLN3)-N-1](2) (1), [(CuLN3)-N-2] (2) and [(CuLN3)-N-3] (3) with three very similar tridentate Schiff base ligands [HL1=6-diethylamino-3-methyl-1-phenyl-4-azahex-3-en1- one, HL2= 6-amino-3-methyl-1-phenyl-4-azahex-3-en-1-one and HL3= 6-amino-3-methyl1- phenyl-4-azasept-3-en-1-one] have been synthesized and structurally characterized by X-ray crystallography. In complex 1 half of the molecules are basal-apical, end-on azido bridged dimers and the remaining half are square-planar monomers whereas all the molecules in complexes 2 and 3 are monomers with square-planar geometry around Cu(II). A competition between the coordinate bond and H-bond seems to be responsible for the difference in structure of the complexes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three kinds of copper(II) azide complexes have been synthesised in excellent yields by reacting Cu(ClO4)(2) . 6H(2)O with N,N-bis(2-pyridylmethyl)amine (L-1); N-(2-pyridylmethyl)-N',N'-dimethylethylenediamine (L-2); and N-(2-pyridylmethyl)-N',N'-diethylethylenediamine (L-3), respectively, in the presence of slight excess of sodium azide. They are the monomeric Cu(L-1)(N-3)(ClO4) (1), the end-to-end diazido-bridged Cu-2(L-2)(2)(mu-1,3-N-3)(2)(ClO4)(2) (2) and the single azido-bridged (mu-1,3-) 1D chain [Cu(L-3)(mu-1,3-N-3)](n)(ClO4)(n) (3). The crystal and molecular structures of these complexes have been solved. The variable temperature magnetic moments of type 2 and type 3 complexes were studied. Temperature dependent susceptibility for 2 was fitted using the Bleaney-Bowers expression which led to the parameters J = -3.43 cm(-1) and R = 1 X 10(-5). The magnetic data for 3 were fitted to Baker's expression for S = 1/2 and the parameters obtained were J = 1.6 cm(-1) and R = 3.2 x 10(-4). Crystal data are as follows. Cu(L-1)(N-3)(ClO4): Chemical formula, C12H13ClN6O4Cu; crystal system, monoclinic; space group, P2(1)/c; a = 8.788(12), b = 13.045(15), c = 14.213(15) Angstrom; beta = 102.960(10)degrees; Z = 4. Cu(L-2)(mu-N-3)(ClO4): Chemical formula. C10H17ClN6O4Cu: crystal system, monoclinic; space group, P2(1)/c; a = 10.790(12), b = 8.568(9), c = 16.651(17) Angstrom; beta = 102.360(10)degrees; Z = 4. [Cu(L-3)(mu-N-3)](ClO4): Chemical formula, C12H21ClN6O4Cu; crystal system, monoclinic; space group, P2(1)/c; a = 12.331(14), b = 7.804(9), c = 18.64(2) Angstrom; beta = 103.405(10)degrees; Z = 4. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel Ru(II) complex containing an electron-poor, highly fluorinated PCPArF pincer ligand has been synthesized in good yield via a transcyclometalation reaction. The complex has been fully characterized by elemental analysis, 1D and 2D NMR techniques, LTV-vis spectroscopy, and cyclic voltammetry. Single-crystal X-ray structural analysis and DFT calculations were performed. The structural features and electronic properties of the remarkably stable PCPArF-Ru(II) complex 4 have been investigated and show unanticipated differences compared to its protio analogue.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The 1:1 condensation of N-methyl-1,3-diaminopropane and N,N-diethyl-1,2-diminoethane with 2-acetylpyridine, respectively at high dilution gives the tridentate mono-condensed Schiff bases N-methyl-N'-(1-pyridin-2-yl-ethylidene)-propane-1,3-diamine (L-1) and N,N-diethyl-N'-(1-pyridin-2-yl-ethylidene)-ethane-1,2-diamine (L-2). The tridentate ligands were allowed to react with methanol solutions of nickel(II) thiocyanate to prepare the complexes [Ni(L-1)(SCN)(2)(OH2) (1) and [{Ni(L-2)(SCN)}(2)] (2). Single crystal X-ray diffraction was used to confirm the structures of the complexes. The nickel(II) in complex 1 is bonded to three nitrogen donor atoms of the ligand L-1 in a mer orientation, together with two thiocyanates bonded through nitrogen and a water molecule, and it is the first Schiff base complex of nickel(II) containing both thiocyanate and coordinated water. The coordinated water initiates a hydrogen bonded 2D network. In complex 2, the nickel ion occupies a slightly distorted octahedral coordination sphere, being bonded to three nitrogen atoms from the ligand L-2, also in a mer orientation, and two thiocyanate anions through nitrogen. In contrast to 1, the sixth coordination site is occupied by a sulfur atom from a thiocyanate anion in an adjacent molecule, thus creating a centrosymmetric dimer. A variable temperature magnetic study of complex 2 indicates the simultaneous presence of zero-field splitting, weak intramolecular ferromagnetic coupling and intermolecular antiferromagnetic interactions between the nickel(II) centers.