2 resultados para Ruderal

em CentAUR: Central Archive University of Reading - UK


Relevância:

10.00% 10.00%

Publicador:

Resumo:

1. Changes in the frequency of extreme events, such as droughts, may be one of the most significant impacts of climate change for ecosystems. Models predict more frequent summer droughts in much of England: this paper investigates the impact on different types of plants in an ex-arable grassland community. 2. A long-term experiment simulated increased and decreased summer precipitation. Substantial interannual variation allowed the effects of summer drought to be tested in combination with wet and dry weather in other seasons. This is important, as climate models predict increased winter precipitation. 3. Total cover abundance in early summer increased with increasing water supply in the previous summer; there was no effect of winter precipitation. Productivity is therefore likely to decrease with more frequent summer droughts, with no mitigating effect of wetter winters. 4. The percentage cover of perennial grasses declined during a natural drought in 1995-97; this was exacerbated by the experimental drought treatment and reduced by supplemented rainfall. Simultaneously, short-lived ruderal species increased; this was greatest in drought treatments and least with supplemented rainfall. 4. These trends were subsequently reversed during several years of unusually wet weather, with perennial grasses increasing and short-lived forbs decreasing. This occurred even in experimentally droughted plots, and we propose that it resulted from rapid coverage of gaps during wet autumns and winters. 6. Deep-rooted species generally proved to be more drought resistant, but there were exceptions. 7. We conclude that increased frequency of summer droughts could have serious implications for the establishment and successional development of ex-arable grasslands. Increased winter precipitation would moderate the impact on species composition, but not on productivity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Drought events are projected to increase in frequency and magnitude, which may alter the composition of ecological communities. Using a functional community metric that describes abundance, life history traits and conservation status, based upon Grime’s CSR (Competitive-Stress tolerant-Ruderal)¬ scheme, we investigated how British butterfly communities changed during an extreme drought in 1995. Throughout Britain, the total abundance of these insects had a significant tendency to increase, accompanied by substantial changes in community composition, particularly in more northerly, wetter sites. Communities tended to shift away from specialist, vulnerable species, and towards generalist, widespread species and, in the year following, communities had yet to return to equilibrium. Importantly, heterogeneity in surrounding landscapes mediated community responses to the drought event. Contrary to expectation, however, community shifts were more extreme in areas of greater topographic diversity, whilst land-cover diversity buffered community changes and limited declines in vulnerable specialist butterflies.