18 resultados para Rst
em CentAUR: Central Archive University of Reading - UK
Resumo:
A large number of urban surface energy balance models now exist with different assumptions about the important features of the surface and exchange processes that need to be incorporated. To date, no com- parison of these models has been conducted; in contrast, models for natural surfaces have been compared extensively as part of the Project for Intercomparison of Land-surface Parameterization Schemes. Here, the methods and first results from an extensive international comparison of 33 models are presented. The aim of the comparison overall is to understand the complexity required to model energy and water exchanges in urban areas. The degree of complexity included in the models is outlined and impacts on model performance are discussed. During the comparison there have been significant developments in the models with resulting improvements in performance (root-mean-square error falling by up to two-thirds). Evaluation is based on a dataset containing net all-wave radiation, sensible heat, and latent heat flux observations for an industrial area in Vancouver, British Columbia, Canada. The aim of the comparison is twofold: to identify those modeling ap- proaches that minimize the errors in the simulated fluxes of the urban energy balance and to determine the degree of model complexity required for accurate simulations. There is evidence that some classes of models perform better for individual fluxes but no model performs best or worst for all fluxes. In general, the simpler models perform as well as the more complex models based on all statistical measures. Generally the schemes have best overall capability to model net all-wave radiation and least capability to model latent heat flux.
Resumo:
Generalizing the notion of an eigenvector, invariant subspaces are frequently used in the context of linear eigenvalue problems, leading to conceptually elegant and numerically stable formulations in applications that require the computation of several eigenvalues and/or eigenvectors. Similar benefits can be expected for polynomial eigenvalue problems, for which the concept of an invariant subspace needs to be replaced by the concept of an invariant pair. Little has been known so far about numerical aspects of such invariant pairs. The aim of this paper is to fill this gap. The behavior of invariant pairs under perturbations of the matrix polynomial is studied and a first-order perturbation expansion is given. From a computational point of view, we investigate how to best extract invariant pairs from a linearization of the matrix polynomial. Moreover, we describe efficient refinement procedures directly based on the polynomial formulation. Numerical experiments with matrix polynomials from a number of applications demonstrate the effectiveness of our extraction and refinement procedures.
Resumo:
The aim of this chapter is to examine what the construction sector brings to our understanding of the procurement of complex performance. The chapter is divided into the following parts: fi rst, an overview of the various matters that contribute to the complexity of construction procurement is provided. Second, the most important contractual incentive schemes found in construction contracts are discussed, and this is followed by, third, an examination of the changes associated with the shift towards procuring complex performance (PCP) (service provision). Fourth, the main findings of the authors’ recent research on PCP contracts are summarised, followed by the conclusion. It should be noted that the procurement of services is referred to as ‘PCP’ in this chapter.
Resumo:
This paper concerns the switching on of two-dimensional time-harmonic scalar waves. We first review the switch-on problem for a point source in free space, then proceed to analyse the analogous problem for the diffraction of a plane wave by a half-line (the ‘Sommerfeld problem’), determining in both cases the conditions under which the field is well-approximated by the solution of the corresponding frequency domain problem. In both cases the rate of convergence to the frequency domain solution is found to be dependent on the strength of the singularity on the leading wavefront. In the case of plane wave diffraction at grazing incidence the frequency domain solution is immediately attained along the shadow boundary after the arrival of the leading wavefront. The case of non-grazing incidence is also considered.
Resumo:
The vertical structure of the relationship between water vapor and precipitation is analyzed in 5 yr of radiosonde and precipitation gauge data from the Nauru Atmospheric Radiation Measurement (ARM) site. The first vertical principal component of specific humidity is very highly correlated with column water vapor (CWV) and has a maximum of both total and fractional variance captured in the lower free troposphere (around 800 hPa). Moisture profiles conditionally averaged on precipitation show a strong association between rainfall and moisture variability in the free troposphere and little boundary layer variability. A sharp pickup in precipitation occurs near a critical value of CWV, confirming satellite-based studies. A lag–lead analysis suggests it is unlikely that the increase in water vapor is just a result of the falling precipitation. To investigate mechanisms for the CWV–precipitation relationship, entraining plume buoyancy is examined in sonde data and simplified cases. For several different mixing schemes, higher CWV results in progressively greater plume buoyancies, particularly in the upper troposphere, indicating conditions favorable for deep convection. All other things being equal, higher values of lower-tropospheric humidity, via entrainment, play a major role in this buoyancy increase. A small but significant increase in subcloud layer moisture with increasing CWV also contributes to buoyancy. Entrainment coefficients inversely proportional to distance from the surface, associated with mass flux increase through a deep lower-tropospheric layer, appear promising. These yield a relatively even weighting through the lower troposphere for the contribution of environmental water vapor to midtropospheric buoyancy, explaining the association of CWV and buoyancy available for deep convection.
Resumo:
A simple and effective algorithm is introduced for the system identification of Wiener system based on the observational input/output data. The B-spline neural network is used to approximate the nonlinear static function in the Wiener system. We incorporate the Gauss-Newton algorithm with De Boor algorithm (both curve and the first order derivatives) for the parameter estimation of the Wiener model, together with the use of a parameter initialization scheme. The efficacy of the proposed approach is demonstrated using an illustrative example.
Resumo:
In this paper sequential importance sampling is used to assess the impact of observations on a ensemble prediction for the decadal path transitions of the Kuroshio Extension (KE). This particle filtering approach gives access to the probability density of the state vector, which allows us to determine the predictive power — an entropy based measure — of the ensemble prediction. The proposed set-up makes use of an ensemble that, at each time, samples the climatological probability distribution. Then, in a post-processing step, the impact of different sets of observations is measured by the increase in predictive power of the ensemble over the climatological signal during one-year. The method is applied in an identical-twin experiment for the Kuroshio Extension using a reduced-gravity shallow water model. We investigate the impact of assimilating velocity observations from different locations during the elongated and the contracted meandering state of the KE. Optimal observations location correspond to regions with strong potential vorticity gradients. For the elongated state the optimal location is in the first meander of the KE. During the contracted state of the KE it is located south of Japan, where the Kuroshio separates from the coast.
Resumo:
We reconsider the theory of the linear response of non-equilibrium steady states to perturbations. We �rst show that by using a general functional decomposition for space-time dependent forcings, we can de�ne elementary susceptibilities that allow to construct the response of the system to general perturbations. Starting from the de�nition of SRB measure, we then study the consequence of taking di�erent sampling schemes for analysing the response of the system. We show that only a speci�c choice of the time horizon for evaluating the response of the system to a general time-dependent perturbation allows to obtain the formula �rst presented by Ruelle. We also discuss the special case of periodic perturbations, showing that when they are taken into consideration the sampling can be �ne-tuned to make the de�nition of the correct time horizon immaterial. Finally, we discuss the implications of our results in terms of strategies for analyzing the outputs of numerical experiments by providing a critical review of a formula proposed by Reick.
Resumo:
We derive energy-norm a posteriori error bounds, using gradient recovery (ZZ) estimators to control the spatial error, for fully discrete schemes for the linear heat equation. This appears to be the �rst completely rigorous derivation of ZZ estimators for fully discrete schemes for evolution problems, without any restrictive assumption on the timestep size. An essential tool for the analysis is the elliptic reconstruction technique.Our theoretical results are backed with extensive numerical experimentation aimed at (a) testing the practical sharpness and asymptotic behaviour of the error estimator against the error, and (b) deriving an adaptive method based on our estimators. An extra novelty provided is an implementation of a coarsening error "preindicator", with a complete implementation guide in ALBERTA in the appendix.
Resumo:
A novel two-stage construction algorithm for linear-in-the-parameters classifier is proposed, aiming at noisy two-class classification problems. The purpose of the first stage is to produce a prefiltered signal that is used as the desired output for the second stage to construct a sparse linear-in-the-parameters classifier. For the first stage learning of generating the prefiltered signal, a two-level algorithm is introduced to maximise the model's generalisation capability, in which an elastic net model identification algorithm using singular value decomposition is employed at the lower level while the two regularisation parameters are selected by maximising the Bayesian evidence using a particle swarm optimization algorithm. Analysis is provided to demonstrate how “Occam's razor” is embodied in this approach. The second stage of sparse classifier construction is based on an orthogonal forward regression with the D-optimality algorithm. Extensive experimental results demonstrate that the proposed approach is effective and yields competitive results for noisy data sets.
Resumo:
The first record of dust deposition events on Mt. Elbrus, Caucasus Mountains derived from a snow pit and a shallow firn core is presented for the 2009–2012 period. A combination of isotopic analysis, SEVIRI red-greenblue composite imagery, MODIS atmospheric optical depth fields derived using the Deep Blue algorithm, air mass trajectories derived using the HYSPLIT model and analyses of meteorological data enabled identification of dust source regions with high temporal (hours) and spatial (ca. 20–100 km) resolution. Seventeen dust deposition events were detected; fourteen occurred in March–June, one in February and two in October. Four events originated in the Sahara, predominantly in northeastern Libya and eastern Algeria. Thirteen events originated in the Middle East, in the Syrian Desert and northern Mesopotamia, from a mixture of natural and anthropogenic sources. Dust transportation from Sahara was associated with vigorous Saharan depressions, strong surface winds in the source region and mid-tropospheric southwesterly flow with daily winds speeds of 20–30 m s−1 at 700 hPa level. Although these events were less frequent than those originating in the Middle East, they resulted in higher dust concentrations in snow. Dust transportation from the Middle East was associated with weaker depressions forming over the source region, high pressure centred over or extending towards the Caspian Sea and a weaker southerly or southeasterly flow towards the Caucasus Mountains with daily wind speeds of 12–18 m s−1 at 700 hPa level. Higher concentrations of nitrates and ammonium characterised dust from the Middle East deposited on Mt. Elbrus in 2009 indicating contribution of anthropogenic sources. The modal values of particle size distributions ranged between 1.98 µm and 4.16 µm. Most samples were characterised by modal values of 2.0– 2.8 µm with an average of 2.6 µm and there was no signifi- cant difference between dust from the Sahara and the Middle East.
Resumo:
Sources and sinks of gravitational potential energy (GPE) play a rate-limiting role in the large scale ocean circulation. A key source is turbulent diapycnal mixing, whereby irre- versible mixing across isoneutral surfaces is enhanced by turbulent straining of these surfaces. This has motivated international observational efforts to map diapycnal mixing in the global ocean. However, in order to accurately relate the GPE supplied to the large scale circulation by diapycnal mixing to the mixing energy source, it is first necessary to determine the ratio, ξ , of the GPE generation rate to the available potential energy dissipation rate associated with turbulent mixing. Here, the link between GPE and hydro- static pressure is used to derive the GPE budget for a com- pressible ocean with a nonlinear equation of state. The role of diapycnal mixing is isolated and from this a global cli- matological distribution of ξ is calculated. It is shown that, for a given source of mixing energy, typically three times as much GPE is generated if the mixing takes place in bottom waters rather than in the pycnocline. This is due to GPE destruction by cabbelling in the pycnocline, as opposed to thermobaric enhancement of GPE generation by diapycnal mixing in the deep ocean.
Resumo:
In a series of papers, Killworth and Blundell have proposed to study the effects of a background mean flow and topography on Rossby wave propagation by means of a generalized eigenvalue problem formulated in terms of the vertical velocity, obtained from a linearization of the primitive equations of motion. However, it has been known for a number of years that this eigenvalue problem contains an error, which Killworth was prevented from correcting himself by his unfortunate passing and whose correction is therefore taken up in this note. Here, the author shows in the context of quasigeostrophic (QG) theory that the error can ulti- mately be traced to the fact that the eigenvalue problem for the vertical velocity is fundamentally a non- linear one (the eigenvalue appears both in the numerator and denominator), unlike that for the pressure. The reason that this nonlinear term is lacking in the Killworth and Blundell theory comes from neglecting the depth dependence of a depth-dependent term. This nonlinear term is shown on idealized examples to alter significantly the Rossby wave dispersion relation in the high-wavenumber regime but is otherwise irrelevant in the long-wave limit, in which case the eigenvalue problems for the vertical velocity and pressure are both linear. In the general dispersive case, however, one should first solve the generalized eigenvalue problem for the pressure vertical structure and, if needed, diagnose the vertical velocity vertical structure from the latter.
Resumo:
We study individual decision making in a lottery-choice task performed by three different populations: gamblers under psychological treatment ("addicts"), gamblers’ spouses ("victims"), and people who are neither gamblers or gamblers’ spouses ("normals"). We find that addicts are willing to take less risk than normals, but the difference is smaller as a gambler’s time under treatment increases. The large majority of victims report themselves unwilling to take any risk at all. However, addicts in the first year of treatment react more than other addicts to the different values of the risk-return parameter.
Resumo:
Numerical simulations are performed to assess the influence of the large-scale circulation on the transition from suppressed to active convection. As a model tool, we used a coupled-column model. It consists of two cloud-resolving models which are fully coupled via a large-scale circulation which is derived from the requirement that the instantaneous domain-mean potential temperature profiles of the two columns remain close to each other. This is known as the weak-temperature gradient approach. The simulations of the transition are initialized from coupled-column simulations over non-uniform surface forcing and the transition is forced within the dry column by changing the local and/or remote surface forcings to uniform surface forcing across the columns. As the strength of the circulation is reduced to zero, moisture is recharged into the dry column and a transition to active convection occurs once the column is sufficiently moistened to sustain deep convection. Direct effects of changing surface forcing occur over the first few days only. Afterward, it is the evolution of the large-scale circulation which systematically modulates the transition. Its contributions are approximately equally divided between the heating and moistening effects. A transition time is defined to summarize the evolution from suppressed to active convection. It is the time when the rain rate within the dry column is halfway to the mean value obtained at equilibrium over uniform surface forcing. The transition time is around twice as long for a transition that is forced remotely compared to a transition that is forced locally. Simulations in which both local and remote surface forcings are changed produce intermediate transition times.