12 resultados para Root surface area
em CentAUR: Central Archive University of Reading - UK
Resumo:
Dissolution rates were calculated for a range of grain sizes of anorthite and biotite dissolved under far from equilibrium conditions at pH 3, T = 20 degrees C. Dissolution rates were normalized to initial and final BET surface area, geometric surface area, mass and (for biotite only) geometric edge surface area. Constant (within error) dissolution rates were only obtained by normalizing to initial BET surface area for biotite. The normalizing term that gave the smallest variation about the mean for anorthite was initial BET surface area. In field studies, only current (final) surface area is measurable. In this study, final geometric surface area gave the smallest variation for anorthite dissolution rates and final geometric edge surface area for biotite dissolution rates. (c) 2005 Published by Elsevier B.V.
Resumo:
Laboratory determined mineral weathering rates need to be normalised to allow their extrapolation to natural systems. The principle normalisation terms used in the literature are mass, and geometric- and BET specific surface area (SSA). The purpose of this study was to determine how dissolution rates normalised to these terms vary with grain size. Different size fractions of anorthite and biotite ranging from 180-150 to 20-10 mu m were dissolved in pH 3, HCl at 25 degrees C in flow through reactors under far from equilibrium conditions. Steady state dissolution rates after 5376 h (anorthite) and 4992 h (biotite) were calculated from Si concentrations and were normalised to initial- and final- mass and geometric-, geometric edge- (biotite), and BET SSA. For anorthite, rates normalised to initial- and final-BET SSA ranged from 0.33 to 2.77 X 10(-10) mol(feldspar) m(-2) s(-1), rates normalised to initial- and final-geometric SSA ranged from 5.74 to 8.88 X 10(-10) mol(feldspar) m(-2) s(-1) and rates normalised to initial- and final-mass ranged from 0.11 to 1.65 mol(feldspar) g(-1) s(-1). For biotite, rates normalised to initial- and final-BET SSA ranged from 1.02 to 2.03 X 10(-12) mol(biotite) m(-2) s(-1), rates normalised to initial- and final-geometric SSA ranged from 3.26 to 16.21 X 10(-12) mol(biotite) m(-2) s(-1), rates normalised to initial- and final-geometric edge SSA ranged from 59.46 to 111.32 x 10(-12) mol(biotite) m(-2) s(-1) and rates normalised to initial- and final-mass ranged from 0.81 to 6.93 X 10(-12) mol(biotite) g(-1) s(-1). For all normalising terms rates varied significantly (p <= 0.05) with grain size. The normalising terms which gave least variation in dissolution rate between grain sizes for anorthite were initial BET SSA and initial- and final-geometric SSA. This is consistent with: (1) dissolution being dominated by the slower dissolving but area dominant non-etched surfaces of the grains and, (2) the walls of etch pits and other dissolution features being relatively unreactive. These steady state normalised dissolution rates are likely to be constant with time. Normalisation to final BET SSA did not give constant ratios across grain size due to a non-uniform distribution of dissolution features. After dissolution coarser grains had a greater density of dissolution features with BET-measurable but unreactive wall surface area than the finer grains. The normalising term which gave the least variation in dissolution rates between grain sizes for biotite was initial BET SSA. Initial- and final-geometric edge SSA and final BET SSA gave the next least varied rates. The basal surfaces dissolved sufficiently rapidly to influence bulk dissolution rate and prevent geometric edge SSA normalised dissolution rates showing the least variation. Simple modelling indicated that biotite grain edges dissolved 71-132 times faster than basal surfaces. In this experiment, initial BET SSA best integrated the different areas and reactivities of the edge and basal surfaces of biotite. Steady state dissolution rates are likely to vary with time as dissolution alters the ratio of edge to basal surface area. Therefore they would be more properly termed pseudo-steady state rates, only appearing constant because the time period over which they were measured (1512 h) was less than the time period over wich they would change significantly. (c) 2006 Elsevier Inc. All rights reserved.
Resumo:
The applicability of BET model for calculation of surface area of activated carbons is checked by using molecular simulations. By calculation of geometric surface areas for the simple model carbon slit-like pore with the increasing width, and by comparison of the obtained values with those for the same systems from the VEGA ZZ package (adsorbate-accessible molecular surface), it is shown that the latter methods provide correct values. For the system where a monolayer inside a pore is created the ASA approach (GCMC, Ar, T = 87 K) underestimates the value of surface area for micropores (especially, where only one layer is observed and/or two layers of adsorbed Ar are formed). Therefore, we propose the modification of this method based on searching the relationship between the pore diameter and the number of layers in a pore. Finally BET; original andmodified ASA; and A, B and C-point surface areas are calculated for a series of virtual porous carbons using simulated Ar adsorption isotherms (GCMC and T = 87 K). The comparison of results shows that the BET method underestimates and not, as it was usually postulated, overestimates the surface areas of microporous carbons.
Resumo:
Change in morphological and physiological parameters in response to phosphorus (P) supply was studied in 11 perennial herbaceous legume species, six Australian native (Lotus australis, Cullen australasicum, Kennedia prorepens, K. prostrata, Glycine canescens, C. tenax) and five exotic species (Medicago sativa, Lotononis bainesii, Bituminaria bituminosa var albomarginata, Lotus corniculatus, Macroptilium bracteatum). We aimed to identify mechanisms for P acquisition from soil. Plants were grown in sterilised washed river sand; eight levels of P as KH2PO4 ranging from 0 to 384 μg P g−1 soil were applied. Plant growth under low-P conditions strongly correlated with physiological P-use efficiency and/or P-uptake efficiency. Taking all species together, at 6 μg P g−1 soil there was a good correlation between P uptake and both root surface area and total root length. All species had higher amounts of carboxylates in the rhizosphere under a low level of P application. Six of the 11 species increased the fraction of rhizosphere citrate in response to low P, which was accompanied by a reduction in malonate, except L. corniculatus. In addition, species showed different plasticity in response to P-application levels and different strategies in response to P deficiency. Our results show that many of the 11 species have prospects for low-input agroecosystems based on their high P-uptake and P-use efficiency.
Resumo:
Sea surface temperature (SST) data are often provided as gridded products, typically at resolutions of order 0.05 degrees from satellite observations to reduce data volume at the request of data users and facilitate comparison against other products or models. Sampling uncertainty is introduced in gridded products where the full surface area of the ocean within a grid cell cannot be fully observed because of cloud cover. In this paper we parameterise uncertainties in SST as a function of the percentage of clear-sky pixels available and the SST variability in that subsample. This parameterisation is developed from Advanced Along Track Scanning Radiometer (AATSR) data, but is applicable to all gridded L3U SST products at resolutions of 0.05-0.1 degrees, irrespective of instrument and retrieval algorithm, provided that instrument noise propagated into the SST is accounted for. We also calculate the sampling uncertainty of ~0.04 K in Global Area Coverage (GAC) Advanced Very High Resolution Radiometer (AVHRR) products, using related methods.
Resumo:
Sorghum (Sorghum bicolor) was grown for 40 days in. rhizocylinder (a growth container which permitted access to rh zosphere and nonrhizosphere soil), in two soils of low P status. Soils were fertilized with different rates of ammonium and nitrate and supplemented with 40 mg phosphorus (P) kg(-1) and inoculated with either Glomus mosseae (Nicol. and Gerd.) or nonmycorrhizal root inoculum.. N-serve (2 mg kg(-1)) was added to prevent nitrification. At harvest, soil from around the roots was collected at distances of 0-5, 5-10, and 10-20 mm from the root core which was 35 mm diameter. Sorghum plants, with and without mycorrhiza, grew larger with NH4+ than with NO3- application. After measuring soil pH, 4 3 suspensions of the same sample were titrated against 0.01 M HCl or 0.01 M NaOH until soil pH reached the nonplanted pH level. The acid or base requirement for each sample was calculated as mmol H+ or OFF kg(-1) soil. The magnitude of liberated acid or base depended on the form and rate of nitrogen and soil type. When the plant root was either uninfected or infected with mycorrhiza., soil pH changes extended up to 5 mm from the root core surface. In both soils, ammonium as an N source resulted in lower soil pH than nitrate. Mycorrhizal (VAM) inoculation did not enhance this difference. In mycorrhizal inoculated soil, P depletion extended tip to 20 mm from the root surface. In non-VAM inoculated soil P depletion extended up to 10 mm from the root surface and remained unchanged at greater distances. In the mycorrhizal inoculated soils, the contribution of the 0-5 mm soil zone to P uptake was greater than the core soil, which reflects the hyphal contribution to P supply. Nitrogen (N) applications that caused acidification increased P uptake because of increased demand; there is no direct evidence that the increased uptake was due to acidity increasing the solubility of P although this may have been a minor effect.
Resumo:
An important step in liposome characterization is to determine the location of a drug within the liposome. This work thus investigated the interaction of dipalmitoylphosphatidylcholine liposomes with drugs of varied water solubility, polar surface area (PSA) and partition coefficient using high sensitivity differential scanning calorimetry. Lipophilic estradiol (ES) interacted strongest with the acyl chains of the lipid membrane, followed by the somewhat polar 5-fluorouracil (5-FU). Strongly hydrophilic mannitol (MAN) showed no evidence of interaction but water soluble polymers inulin (IN) and an antisense oligonucleotide (OLG), which have very high PSAs, interacted with the lipid head groups. Accordingly, the drugs could be classified as: hydrophilic ones situated in the aqueous core and which may interact with the head groups; those located at the water-bilayer interface with some degree of penetration into the lipid bilayer; those lipophilic drugs constrained within the bilayer. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
Adequate contact with the soil is essential for water and nutrient adsorption by plant roots, but the determination of root–soil contact is a challenging task because it is difficult to visualize roots in situ and quantify their interactions with the soil at the scale of micrometres. A method to determine root–soil contact using X-ray microtomography was developed. Contact areas were determined from 3D volumetric images using segmentation and iso-surface determination tools. The accuracy of the method was tested with physical model systems of contact between two objects (phantoms). Volumes, surface areas and contact areas calculated from the measured phantoms were compared with those estimated from image analysis. The volume was accurate to within 0.3%, the surface area to within 2–4%, and the contact area to within 2.5%. Maize and lupin roots were grown in soil (<2 mm) and vermiculite at matric potentials of −0.03 and −1.6 MPa and in aggregate fractions of 4–2, 2–1, 1–0.5 and < 0.5 mm at a matric potential of −0.03 MPa. The contact of the roots with their growth medium was determined from 3D volumetric images. Macroporosity (>70 µm) of the soil sieved to different aggregate fractions was calculated from binarized data. Root-soil contact was greater in soil than in vermiculite and increased with decreasing aggregate or particle size. The differences in root–soil contact could not be explained solely by the decrease in porosity with decreasing aggregate size but may also result from changes in particle and aggregate packing around the root.
Resumo:
An extensive off-line evaluation of the Noah/Single Layer Urban Canopy Model (Noah/SLUCM) urban land-surface model is presented using data from 15 sites to assess (1) the ability of the scheme to reproduce the surface energy balance observed in a range of urban environments, including seasonal changes, and (2) the impact of increasing complexity of input parameter information. Model performance is found to be most dependent on representation of vegetated surface area cover; refinement of other parameter values leads to smaller improvements. Model biases in net all-wave radiation and trade-offs between turbulent heat fluxes are highlighted using an optimization algorithm. Here we use the Urban Zones to characterize Energy partitioning (UZE) as the basis to assign default SLUCM parameter values. A methodology (FRAISE) to assign sites (or areas) to one of these categories based on surface characteristics is evaluated. Using three urban sites from the Basel Urban Boundary Layer Experiment (BUBBLE) dataset, an independent evaluation of the model performance with the parameter values representative of each class is performed. The scheme copes well with both seasonal changes in the surface characteristics and intra-urban heterogeneities in energy flux partitioning, with RMSE performance comparable to similar state-of-the-art models for all fluxes, sites and seasons. The potential of the methodology for high-resolution atmospheric modelling application using the Weather Research and Forecasting (WRF) model is highlighted. This analysis supports the recommendations that (1) three classes are appropriate to characterize the urban environment, and (2) that the parameter values identified should be adopted as default values in WRF.