42 resultados para Robot vision systems
em CentAUR: Central Archive University of Reading - UK
Resumo:
This paper presents a review of the design and development of the Yorick series of active stereo camera platforms and their integration into real-time closed loop active vision systems, whose applications span surveillance, navigation of autonomously guided vehicles (AGVs), and inspection tasks for teleoperation, including immersive visual telepresence. The mechatronic approach adopted for the design of the first system, including head/eye platform, local controller, vision engine, gaze controller and system integration, proved to be very successful. The design team comprised researchers with experience in parallel computing, robot control, mechanical design and machine vision. The success of the project has generated sufficient interest to sanction a number of revisions of the original head design, including the design of a lightweight compact head for use on a robot arm, and the further development of a robot head to look specifically at increasing visual resolution for visual telepresence. The controller and vision processing engines have also been upgraded, to include the control of robot heads on mobile platforms and control of vergence through tracking of an operator's eye movement. This paper details the hardware development of the different active vision/telepresence systems.
Resumo:
A vision system for recognizing rigid and articulated three-dimensional objects in two-dimensional images is described. Geometrical models are extracted from a commercial computer aided design package. The models are then augmented with appearance and functional information which improves the system's hypothesis generation, hypothesis verification, and pose refinement. Significant advantages over existing CAD-based vision systems, which utilize only information available in the CAD system, are realized. Examples show the system recognizing, locating, and tracking a variety of objects in a robot work-cell and in natural scenes.
Resumo:
The paper presents an overview of dynamic systems with inherent delays in both feedforward and feedback paths and how the performance of such systems can be affected by such delays. The authors concentrate on visually guided systems, where the behaviour of the system is largely dependent on the results of the vision sensors, with particular reference to active robot heads (real-time gaze control). We show how the performance of such systems can deteriorate substantially with the presence of unknown and/or variable delays. Considered choice of system architecture, however, allows the performance of active vision systems to be optimised with respect to the delays present in the system.
Resumo:
In this paper we report the degree of reliability of image sequences taken by off-the-shelf TV cameras for modeling camera rotation and reconstructing 3D structure using computer vision techniques. This is done in spite of the fact that computer vision systems usually use imaging devices that are specifically designed for the human vision. Our scenario consists of a static scene and a mobile camera moving through the scene. The scene is any long axial building dominated by features along the three principal orientations and with at least one wall containing prominent repetitive planar features such as doors, windows bricks etc. The camera is an ordinary commercial camcorder moving along the axial axis of the scene and is allowed to rotate freely within the range +/- 10 degrees in all directions. This makes it possible that the camera be held by a walking unprofessional cameraman with normal gait, or to be mounted on a mobile robot. The system has been tested successfully on sequence of images of a variety of structured, but fairly cluttered scenes taken by different walking cameramen. The potential application areas of the system include medicine, robotics and photogrammetry.
Resumo:
The classical computer vision methods can only weakly emulate some of the multi-level parallelisms in signal processing and information sharing that takes place in different parts of the primates’ visual system thus enabling it to accomplish many diverse functions of visual perception. One of the main functions of the primates’ vision is to detect and recognise objects in natural scenes despite all the linear and non-linear variations of the objects and their environment. The superior performance of the primates’ visual system compared to what machine vision systems have been able to achieve to date, motivates scientists and researchers to further explore this area in pursuit of more efficient vision systems inspired by natural models. In this paper building blocks for a hierarchical efficient object recognition model are proposed. Incorporating the attention-based processing would lead to a system that will process the visual data in a non-linear way focusing only on the regions of interest and hence reducing the time to achieve real-time performance. Further, it is suggested to modify the visual cortex model for recognizing objects by adding non-linearities in the ventral path consistent with earlier discoveries as reported by researchers in the neuro-physiology of vision.
Resumo:
Under the framework of the European Union Funded SAFEE project(1), this paper gives an overview of a novel monitoring and scene analysis system developed for use onboard aircraft in spatially constrained environments. The techniques discussed herein aim to warn on-board crew about pre-determined indicators of threat intent (such as running or shouting in the cabin), as elicited from industry and security experts. The subject matter experts believe that activities such as these are strong indicators of the beginnings of undesirable chains of events or scenarios, which should not be allowed to develop aboard aircraft. This project aimes to detect these scenarios and provide advice to the crew. These events may involve unruly passengers or be indicative of the precursors to terrorist threats. With a state of the art tracking system using homography intersections of motion images, and probability based Petri nets for scene understanding, the SAFEE behavioural analysis system automatically assesses the output from multiple intelligent sensors, and creates. recommendations that are presented to the crew using an integrated airborn user interface. Evaluation of the system is conducted within a full size aircraft mockup, and experimental results are presented, showing that the SAFEE system is well suited to monitoring people in confined environments, and that meaningful and instructive output regarding human actions can be derived from the sensor network within the cabin.
Resumo:
Many weeds occur in patches but farmers frequently spray whole fields to control the weeds in these patches. Given a geo-referenced weed map, technology exists to confine spraying to these patches. Adoption of patch spraying by arable farmers has, however, been negligible partly due to the difficulty of constructing weed maps. Building on previous DEFRA and HGCA projects, this proposal aims to develop and evaluate a machine vision system to automate the weed mapping process. The project thereby addresses the principal technical stumbling block to widespread adoption of site specific weed management (SSWM). The accuracy of weed identification by machine vision based on a single field survey may be inadequate to create herbicide application maps. We therefore propose to test the hypothesis that sufficiently accurate weed maps can be constructed by integrating information from geo-referenced images captured automatically at different times of the year during normal field activities. Accuracy of identification will also be increased by utilising a priori knowledge of weeds present in fields. To prove this concept, images will be captured from arable fields on two farms and processed offline to identify and map the weeds, focussing especially on black-grass, wild oats, barren brome, couch grass and cleavers. As advocated by Lutman et al. (2002), the approach uncouples the weed mapping and treatment processes and builds on the observation that patches of these weeds are quite stable in arable fields. There are three main aspects to the project. 1) Machine vision hardware. Hardware component parts of the system are one or more cameras connected to a single board computer (Concurrent Solutions LLC) and interfaced with an accurate Global Positioning System (GPS) supplied by Patchwork Technology. The camera(s) will take separate measurements for each of the three primary colours of visible light (red, green and blue) in each pixel. The basic proof of concept can be achieved in principle using a single camera system, but in practice systems with more than one camera may need to be installed so that larger fractions of each field can be photographed. Hardware will be reviewed regularly during the project in response to feedback from other work packages and updated as required. 2) Image capture and weed identification software. The machine vision system will be attached to toolbars of farm machinery so that images can be collected during different field operations. Images will be captured at different ground speeds, in different directions and at different crop growth stages as well as in different crop backgrounds. Having captured geo-referenced images in the field, image analysis software will be developed to identify weed species by Murray State and Reading Universities with advice from The Arable Group. A wide range of pattern recognition and in particular Bayesian Networks will be used to advance the state of the art in machine vision-based weed identification and mapping. Weed identification algorithms used by others are inadequate for this project as we intend to collect and correlate images collected at different growth stages. Plants grown for this purpose by Herbiseed will be used in the first instance. In addition, our image capture and analysis system will include plant characteristics such as leaf shape, size, vein structure, colour and textural pattern, some of which are not detectable by other machine vision systems or are omitted by their algorithms. Using such a list of features observable using our machine vision system, we will determine those that can be used to distinguish weed species of interest. 3) Weed mapping. Geo-referenced maps of weeds in arable fields (Reading University and Syngenta) will be produced with advice from The Arable Group and Patchwork Technology. Natural infestations will be mapped in the fields but we will also introduce specimen plants in pots to facilitate more rigorous system evaluation and testing. Manual weed maps of the same fields will be generated by Reading University, Syngenta and Peter Lutman so that the accuracy of automated mapping can be assessed. The principal hypothesis and concept to be tested is that by combining maps from several surveys, a weed map with acceptable accuracy for endusers can be produced. If the concept is proved and can be commercialised, systems could be retrofitted at low cost onto existing farm machinery. The outputs of the weed mapping software would then link with the precision farming options already built into many commercial sprayers, allowing their use for targeted, site-specific herbicide applications. Immediate economic benefits would, therefore, arise directly from reducing herbicide costs. SSWM will also reduce the overall pesticide load on the crop and so may reduce pesticide residues in food and drinking water, and reduce adverse impacts of pesticides on non-target species and beneficials. Farmers may even choose to leave unsprayed some non-injurious, environmentally-beneficial, low density weed infestations. These benefits fit very well with the anticipated legislation emerging in the new EU Thematic Strategy for Pesticides which will encourage more targeted use of pesticides and greater uptake of Integrated Crop (Pest) Management approaches, and also with the requirements of the Water Framework Directive to reduce levels of pesticides in water bodies. The greater precision of weed management offered by SSWM is therefore a key element in preparing arable farming systems for the future, where policy makers and consumers want to minimise pesticide use and the carbon footprint of farming while maintaining food production and security. The mapping technology could also be used on organic farms to identify areas of fields needing mechanical weed control thereby reducing both carbon footprints and also damage to crops by, for example, spring tines. Objective i. To develop a prototype machine vision system for automated image capture during agricultural field operations; ii. To prove the concept that images captured by the machine vision system over a series of field operations can be processed to identify and geo-reference specific weeds in the field; iii. To generate weed maps from the geo-referenced, weed plants/patches identified in objective (ii).
Resumo:
In this paper we discuss current work concerning Appearance-based and CAD-based vision; two opposing vision strategies. CAD-based vision is geometry based, reliant on having complete object centred models. Appearance-based vision builds view dependent models from training images. Existing CAD-based vision systems that work with intensity images have all used one and zero dimensional features, for example lines, arcs, points and corners. We describe a system we have developed for combining these two strategies. Geometric models are extracted from a commercial CAD library of industry standard parts. Surface appearance characteristics are then learnt automatically by observing actual object instances. This information is combined with geometric information and is used in hypothesis evaluation. This augmented description improves the systems robustness to texture, specularities and other artifacts which are hard to model with geometry alone, whilst maintaining the advantages of a geometric description.
Resumo:
Multiple cooperating robot systems may be required to take up a closely coupled configuration in order to perform a task. An example is extended baseline stereo (EBS), requiring that two robots must establish and maintain for a certain period of time a constrained kinematic relationship to each other. In this paper we report on the development of a networked robotics framework for modular, distributed robot systems that supports the creation of such configurations. The framework incorporates a query mechanism to locate modules distributed across the two robot systems. The work presented in this paper introduces special mechanisms to model the kinematic constraint and its instantiation. The EBS configuration is used as a case study and experimental implementation to demonstrate the approach.
Resumo:
Mobile robots provide a versatile platform for research, however they can also provide an interesting educational platform for public exhibition at museums. In general museums require exhibits that are both eye catching and exciting to the public whilst requiring a minimum of maintenance time from museum technicians. In many cases it is simply not possible to continuously change batteries and some method of supplying continous power is required. A powered flooring system is described that is capable of providing power continuously to a group of robots. Three different museum exhibit applications are described. All three robot exhibits are of a similar basic design although the exhibits are very different in appearance and behaviour. The durability and versatility of the robots also makes them extremely good candidates for long duration experiments such as those required by evolutionary robotics.
Resumo:
Researchers in the rehabilitation engineering community have been designing and developing a variety of passive/active devices to help persons with limited upper extremity function to perform essential daily manipulations. Devices range from low-end tools such as head/mouth sticks to sophisticated robots using vision and speech input. While almost all of the high-end equipment developed to date relies on visual feedback alone to guide the user providing no tactile or proprioceptive cues, the “low-tech” head/mouth sticks deliver better “feel” because of the inherent force feedback through physical contact with the user's body. However, the disadvantage of a conventional head/mouth stick is that it can only function in a limited workspace and the performance is limited by the user's strength. It therefore seems reasonable to attempt to develop a system that exploits the advantages of the two approaches: the power and flexibility of robotic systems with the sensory feedback of a headstick. The system presented in this paper reflects the design philosophy stated above. This system contains a pair of master-slave robots with the master being operated by the user's head and the slave acting as a telestick. Described in this paper are the design, control strategies, implementation and performance evaluation of the head-controlled force-reflecting telestick system.
Resumo:
A robot mounted camera is useful in many machine vision tasks as it allows control over view direction and position. In this paper we report a technique for calibrating both the robot and the camera using only a single corresponding point. All existing head-eye calibration systems we have encountered rely on using pre-calibrated robots, pre- calibrated cameras, special calibration objects or combinations of these. Our method avoids using large scale non-linear optimizations by recovering the parameters in small dependent groups. This is done by performing a series of planned, but initially uncalibrated robot movements. Many of the kinematic parameters are obtained using only camera views in which the calibration feature is at, or near the image center, thus avoiding errors which could be introduced by lens distortion. The calibration is shown to be both stable and accurate. The robotic system we use consists of camera with pan-tilt capability mounted on a Cartesian robot, providing a total of 5 degrees of freedom.