57 resultados para Rheology

em CentAUR: Central Archive University of Reading - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structure and shear flow behaviour of aqueous micellar solutions and gels formed by an amphiphilic poly(oxybutylene)-poly(oxyethylene)-poly(oxybutylene) triblock copolymer with a lengthy hydrophilic poly(oxyethylene) block has been investigated by rheology, small angle neutron scattering (SANS) and small-angle X-ray scattering (SAXS). SANS revealed that bridging of chains between micelles introduces, in the micellar solution, an attractive long-range component which can be described through a potential of interaction corresponding to sticky soft spheres. The strength of the attractive interaction increases with increasing concentration. Rheology showed that the dependence of the storage modulus with temperature can be explained as a function of the micellar bridging, micellisation and phase morphology. SAXS studies showed that the orientation adopted by the system in the get phase under shear is similar to that previously observed by us for the gel phase of a poly(oxyethylene)-poly(oxybutylene) diblock copolymer with a long poly(oxyethylene) chain, suggesting that the micellar corona/core length ratio and not the architecture of the block copolymer influences the alignment of the gel phase under shear.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structure and flow behaviour of binary mixtures of Pluronic block copolymers P85 and P123 is investigated by small-angle scattering, rheometry and mobility tests. Micelle dimensions are probed by dynamic light scattering. The micelle hydrodynamic radius for the 50/50 mixture is larger than that for either P85 or P123 alone, Clue to the formation of mixed micelles with a higher association number. The phase diagram for 50/50 mixtures contains regions Of Cubic and hexagonal phases similar to those for the parent homopolymers, however the region of stability of the cubic phase is enhanced at low temperature and concentrations above 40 wt%. This is ascribed to favourable packing of the mixed micelles containing core blocks with two different chain lengths, but similar corona chain lengths. The shear flow alignment of face-centred cubic and hexagonal phases is probed by in situ small-angle X-ray or neutron scattering with simultaneous rheology. The hexagonal phase can be aligned using steady shear in a Couette geometry, however the high modulus Cubic phase cannot be aligned well in this way. This requires the application of oscillatory shear or compression. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of change of the rheological properties of gluten with the addition of fractions with specific molecular weight was investigated. Fractions extracted from Hereward, Riband and Soissons flours were added to the dough prior to gluten extraction. Once extracted, the glutens were subjected to temperature sweeps and creep recovery rheological tests. In the temperature sweeps, Hereward fractions containing the larger polypeptides had a strengthening effect on the gluten, indicated by a decrease in tan delta and an increase in elastic creep recovery, while those fractions that comprised monomeric gliadins had a weakening effect. Adding total gluten also had a strengthening effect. For the biscuit-making flour Riband, the results were quite the reverse: all fractions appeared to strengthen the gluten network, while the addition of total gluten did not have a strengthening effect. For Soissons gluten, the addition of total gluten had a strengthening effect while adding any individual fraction weakened the gluten. The results were confirmed with creep-recovery tests.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gluten was extracted from flours of several different wheat varieties of varying baking quality. Creep compliance was measured at room temperature and tan 6 was measured over a range of temperatures from 25 to 95 degrees C. The extracted glutens were heat-treated for 20 min at 25, 40, 50, 60, 70 and 90 degrees C in a water bath, freeze-dried and ground to a fine powder. Tests were carried out for extractability in sodium dodecyl sulphate, free sulphydryl (SH) groups using Ellman's method, surface hydrophobicity and molecular weight (MW) distribution (MWD) using field-flow fractionation and multi-angle laser light scattering. With increasing temperature, the glutens showed a decrease in extractability, with the most rapid decreases occurring between 70 and 90 degrees C, a major transition in tan 6 at around 60 degrees C and a minor transition at 40 degrees C for most varieties, a decrease in free SH groups and surface hydrophobicity and a shift in the MWD towards higher MW. The poor bread-making variety Riband showed the highest values of tan delta and Newtonian compliance, the lowest content of free SH groups and the largest increase of HMW/LMW with increasing temperature. No significant correlations with baking volume were found between any of the measured parameters. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Flours from wheat varieties of differing bread-making quality were fractionated using a sequential salt precipitation technique. The gluten fractions in the different varieties varied in the proportion of HMW, LMW glutenins and gliadins. Their rheological behaviour was examined using constant strain (2%) small deformation oscillation tests over frequencies ranging from 0.005 to 10 Hz, before and after heating at 90 degrees C. The fractions containing a higher proportion of HMW glutenins were associated with a predominantly elastic character, whereas fractions containing mostly gliadins exhibited a viscous-like behaviour. The frequency dependent rheological behaviour of fractions containing HMW proteins was less susceptible to heat, and their elastic character was maintained after heating, whereas the rheology of intermediate fractions and fractions containing mostly gliadins was more susceptible to heating, indicating a rapid change from viscous to elastic behaviour after heating. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The rheological properties of gas cell walls in bread doughs are considered to be important in relation to their stability and gas retention during proof and baking. Large deformation rheological properties of gas cell walls were measured using biaxial extension for a number of doughs of varying breadmaking quality at constant strain rate and elevated temperatures of 25-60degreesC. Strain hardening and failure strain of cell walls both decreased with temperature, with cell walls in good breadmaking doughs remaining stable and retaining their strain hardening properties at higher temperatures (60degreesC), while the cell walls of poor breadmaking doughs became unstable at lower temperatures (45-50degreesC) and had lower strain hardening. Strain hardening measured at 50degreesC gave good correlations with baking volume, with the best correlations achieved between rheological measurements and baking tests that used similar mixing conditions. As predicted by the considered failure criterion, a strain hardening value of I defines a region below which gas cell walls become unstable, and discriminates well between the baking quality of a range of commercial flour blends of varying quality. This indicates that the stability of gas cell walls during baking is strongly related to strain hardening properties, and that extensional rheological measurements can be used as indicators of baking quality.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The applications of rheology to the main processes encountered during breadmaking (mixing, sheeting, fermentation and baking) are reviewed. The most commonly used rheological test methods and their relationships to product functionality are reviewed. It is shown that the most commonly used method for rheological testing of doughs, shear oscillation dynamic rheology, is generally used under deformation conditions inappropriate for breadmaking and shows little relationship with end-use performance. The frequency range used in conventional shear oscillation tests is limited to the plateau region, which is insensitive to changes in the HMW glutenin polymers thought to be responsible for variations in baking quality. The appropriate deformation conditions can be accessed either by long-time creep or relaxation measurements, or by large deformation extensional measurements at low strain rates and elevated temperatures. Molecular size and structure of the gluten polymers that make up the major structural components of wheat are related to their rheological properties via modern polymer rheology concepts. Interactions between polymer chain entanglements and branching are seen to be the key mechanisms determining the rheology of HMW polymers. Recent work confirms the observation that the dynamic shear plateau modulus is essentially independent of variations in MW of glutens amongst wheat varieties of varying baking performance and also that it is not the size of the soluble glutenin polymers, but the secondary structural and rheological properties of the insoluble polymer fraction that are mainly responsible for variations in baking performance. Extensional strain hardening has been shown to be a sensitive indicator of entanglements and long-chain branching in HMW polymers, and is well related to baking performance of bread doughs. The Considere failure criterion for instability in extension of polymers defines a region below which bubble walls become unstable, and predicts that when strain hardening falls below a value of around 1, bubble walls are no longer stable and coalesce rapidly, resulting in loss of gas retention and lower volume and texture. Strain hardening in doughs has been shown to reach this value at increasingly higher temperatures for better breadmaking varieties and is directly related to bubble stability and baking performance. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The crystallisation behaviour of three fat blends, comprising a commercial shortening, a blend of fats with a very low trans fatty acid content ("low-trans") and a blend including hardened rapeseed oil with a relatively high trans fatty acid content ("high-trans") was studied. Molten fats were lowered to a temperature of 31 degrees C and stirred for 0, 15, 30, 45 and 60 min. Samples were removed and their rheological properties studied, using a controlled stress rheometer, employing a frequency sweep procedure. Effects of the progressive crystallisation at 31 degrees C on the melting profile of fat samples removed from the stirred vessel and solidified at -20 degrees C were also studied by differential scanning calorimetry (DSC). The rheological profiles obtained suggested that all of the fats studied had weak viscoelastic "liquid" structures when melted, but these changed to structures perceived by the rheometer as weak viscoelastic "gels" in the early stages of crystallisation (G' (storage modulus) > G" (loss modulus) over most of the measured frequency range). These subsequently developed into weak viscoelastic semi-solids, showing frequency dependent behaviour on further crystallisation. These changes in behaviour were interpreted as changes from a small number of larger crystals "cross-linking" in a liquid matrix to a larger number of smaller crystals packed with a "slip plane" of liquid oil between them. The rate of crystallisation of the three fats was in the order high trans > low-trans > commercial shortening. Changes in the DSC melting profile due to fractionation of triacylglycerols during the crystallisation at 31 degrees C were evident for all three fats. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of six low molecular weight elastomers with hydrogen bonding end-groups have been designed, synthesised and studied. The poly(urethane) based elastomers all contained essentially the same hard block content (ca. 11%) and differ only in the nature of their end-groups. Solution state 1H NMR spectroscopic analysis of model compounds featuring the end-groups demonstrate that they all exhibit very low binding constants, in the range 1.4 to 45.0 M-1 in CDCl3, yet the corresponding elastomers each possess a markedly different nanoscale morphology and rheology in the bulk. We are able to correlate small variations of the binding constant of the end-groups with dramatic changes in the bulk properties of the elastomers. These results provide an important insight into the way in which weak non-covalent interactions can be utilized to afford a range of self-assembled polyurethane based materials that feature different morphologies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hierarchical and "bob" (or branch-on-branch) models are tube-based computational models recently developed for predicting the linear rheology of general mixtures of polydisperse branched polymers. These two models are based on a similar tube-theory framework but differ in their numerical implementation and details of relaxation mechanisms. We present a detailed overview of the similarities and differences of these models and examine the effects of these differences on the predictions of the linear viscoelastic properties of a set of representative branched polymer samples in order to give a general picture of the performance of these models. Our analysis confirms that the hierarchical and bob models quantitatively predict the linear rheology of a wide range of branched polymer melts but also indicate that there is still no unique solution to cover all types of branched polymers without case-by-case adjustment of parameters such as the dilution exponent alpha and the factor p(2) which defines the hopping distance of a branch point relative to the tube diameter. An updated version of the hierarchical model, which shows improved computational efficiency and refined relaxation mechanisms, is introduced and used in these analyses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magmas in volcanic conduits commonly contain microlites in association with preexisting phenocrysts, as often indicated by volcanic rock textures. In this study, we present two different experiments that inves- tigate the flow behavior of these bidisperse systems. In the first experiments, rotational rheometric methods are used to determine the rheology of monodisperse and polydisperse suspensions consisting of smaller, prolate particles (microlites) and larger, equant particles (phenocrysts) in a bubble‐free Newtonian liquid (silicate melt). Our data show that increasing the relative proportion of prolate microlites to equant pheno- crysts in a magma at constant total particle content can increase the relative viscosity by up to three orders of magnitude. Consequently, the rheological effect of particles in magmas cannot be modeled by assuming a monodisperse population of particles. We propose a new model that uses interpolated parameters based on the relative proportions of small and large particles and produces a considerably improved fit to the data than earlier models. In a second series of experiments we investigate the textures produced by shearing bimodal suspensions in gradually solidifying epoxy resin in a concentric cylinder setup. The resulting textures show the prolate particles are aligned with the flow lines and spherical particles are found in well‐organized strings, with sphere‐depleted shear bands in high‐shear regions. These observations may explain the measured variation in the shear thinning and yield stress behavior with increasing solid fraction and particle aspect ratio. The implications for magma flow are discussed, and rheological results and tex- tural observations are compared with observations on natural samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Curd rheology and calcium distribution in buffalo and cows’ milk, were compared at their natural pH and during acidification (pH 6.5–5.6). Buffalo milk displays a curd structure and rheology different from that of cows’ milk and the casein-bound calcium, as well as the contents of fat, protein and calcium, are also higher. Due to these higher amounts of casein-bound calcium, the overall curd strength with buffalo milk (as indicated by the dynamic moduli) was higher, at similar pH values, than those of equivalent gels produced from cows’ milk. The curd rheology was adversely affected at lower pH (5.8–5.6) in both of the milk types, due to the loss of casein-bound calcium from casein micelles. The degree of solubilisation of calcium in buffalo milk during acidification is quite different from that observed in cows’ milk with a lower proportion of the calcium being solubilised in the former. The maximum curd firmness was obtained at pH 6.0 in both milk types. For both species, these rheological and micellar changes were qualitatively the same but quantitatively different, due to the different milk compositions.