13 resultados para Reversals
em CentAUR: Central Archive University of Reading - UK
Resumo:
In recent years, a large number of papers have reported the response of the cusp to solar wind variations under conditions of northward or southward Interplanetary Magnetic Field (IMF) Z-component (BZ). These studies have shown the importance of both temporal and spatial factors in determining the extent and morphology of the cusp and the changes in its location, connected to variations in the reconnection geometry. Here we present a comparative study of the cusp, focusing on an interval characterised by a series of rapid reversals in the BZ-dominated IMF, based on observations from space-borne and ground-based instrumentation. During this interval, from 08:00 to 12:00 UT on 12 February 2003, the IMF BZ component underwent four reversals, remaining for around 30 min in each orientation. The Cluster spacecraft were, at the time, on an outbound trajectory through the Northern Hemisphere magnetosphere, whilst the mainland VHF and Svalbard (ESR) radars of the EISCAT facility were operating in support of the Cluster mission. Both Cluster and the EISCAT were, on occasion during the interval, observing the cusp region. The series of IMF reversal resulted in a sequence of poleward and equatorward motions of the cusp; consequently Cluster crossed the high altitude cusp twice before finally exiting the dayside magnetopause, both times under conditions of northward IMF BZ. The first magnetospheric cusp encounter, by all four Cluster spacecraft, showed reverse ion dispersion typical of lobe reconnection; subsequently, Cluster spacecraft 1 and 3 (only) crossed the cusp for a second time. We suggest that, during this second cusp crossing, these two spacecraft were likely to have been on newly closed field lines, which were first reconnected (opened) at low latitudes and later reconnected again (re-closed) poleward of the northern cusp.
Resumo:
Preference reversals are frequently observed in the lab, but almost all designs use completely transparent prospects, which are rarely features of decision making elsewhere. This raises questions of external validity. We test the robustness of the phenomenon to gambles that incorporate realistic ambiguity in both payoffs and probabilities. In addition, we test a recent explanation of preference reversals by loss aversion, which would also restrict the incidence of reversals outside the lab. According to this account, reversals occur largely because the valuation task endows subject with a gamble, activating loss aversion. This contrasts with the choice task, where the reference point is pre-experiment wealth. We test this explanation by holding the reference point constant. Our evidence suggests that reversals are only slightly diminished with ambiguity. We find no evidence supporting their explanation by loss aversion.
Resumo:
This paper finds preference reversals in measurements of ambiguity aversion, even if psychological and informational circumstances are kept constant. The reversals are of a fundamentally different nature than the reversals found before because they cannot be explained by context-dependent weightings of attributes. We offer an explanation based on Sugden's random-reference theory, with different elicitation methods generating different random reference points. Then measurements of ambiguity aversion that use willingness to pay are confounded by loss aversion and hence overestimate ambiguity aversion.
Resumo:
Many models of immediate memory predict the presence or absence of various effects, but none have been tested to see whether they predict an appropriate distribution of effect sizes. The authors show that the feature model (J. S. Nairne, 1990) produces appropriate distributions of effect sizes for both the phonological confusion effect and the word-length effect. The model produces the appropriate number of reversals, when participants are more accurate with similar items or long items, and also correctly predicts that participants performing less well overall demonstrate smaller and less reliable phonological similarity and word-length effects and are more likely to show reversals. These patterns appear within the model without the need to assume a change in encoding or rehearsal strategy or the deployment of a different storage buffer. The implications of these results and the wider applicability of the distributionmodeling approach are discussed.
Resumo:
If people monitor a visual stimulus stream for targets they often miss the second (T2) if it appears soon after the first (T1)-the attentional blink. There is one exception: T2 is often not missed if it appears right after T1, i.e., at lag 1. This lag-l sparing is commonly attributed to the possibility that T1 processing opens an attentional gate, which may be so sluggish that an early T2 can slip in before it closes. We investigated why the gate may close and exclude further stimuli from processing. We compared a control approach, which assumes that gate closing is exogenously triggered by the appearance of nontargets, and an integration approach, which assumes that gate closing is under endogenous control. As predicted by the latter but not the former, T2 performance and target reversals were strongly affected by the temporal distance between T1 and T2, whereas the presence or the absence of a nontarget intervening between T1 and T2 had little impact. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Typeface design: collaborative work commissioned by Adobe Inc. Published but unreleased. The Adobe Devanagari typefaces were commissioned from Tiro Typeworks and collaboratively designed by Tim Holloway, Fiona Ross and John Hudson, beginning in 2005. The types were officially released in 2009. The design brief was to produce a typeface for modern business communications in Hindi and other languages, to be legible both in print and on screen. Adobe Devanagari was designed to be highly readable in a range of situations including quite small sizes in spreadsheets and in continuous text setting, as well as at display sizes, where the full character of the typeface reveals itself. The construction of the letters is based on traditional penmanship but possesses less stroke contrast than many Devanagari types, in order to maintain strong, legible forms at smaller sizes. To achieve a dynamic, fluid style the design features a rounded treatment of distinguishing terminals and stroke reversals, open counters that also aid legibility at smaller sizes, and delicately flaring strokes. Together, these details reveal an original hand and provide a contemporary approach that is clean, clear and comfortable to read whether in short or long passages of text. This new approach to a traditional script is intended to counter the dominance of rigid, staccato-like effects of straight verticals and horizontals in earlier types and many existing fonts. OpenType Layout features in the fonts provide both automated and discretionary access to an extensive glyph set, enabling sophisticated typography. Many conjuncts preferred in classical literary texts and particularly in some North Indian languages are included; these literary conjuncts may be substituted by specially designed alternative linear forms and fitted half forms. The length of the ikars—ि and ी—varies automatically according to adjacent letter or conjunct width. Regional variants of characters and numerals (e.g. Marathi forms) are included as alternates. Careful attention has been given to the placements of all vowel signs and modifiers. The fonts include both proportional and tabular numerals in Indian and European styles. Extensive kerning covers several thousand possible combinations of half forms and full forms to anticipate arbitrary conjuncts in foreign loan words. _____
Resumo:
There is considerable interest in the potential of a group of dietary-derived phytochemicals known as flavonoids in modulating neuronal function and thereby influencing memory, learning and cognitive function. The present review begins by detailing the molecular events that underlie the acquisition and consolidation of new memories in the brain in order to provide a critical background to understanding the impact of flavonoid-rich diets or pure flavonoids on memory. Data suggests that despite limited brain bioavailability, dietary supplementation with flavonoid-rich foods, such as blueberry, green tea and Ginkgo biloba lead to significant reversals of age-related deficits on spatial memory and learning. Furthermore, animal and cellular studies suggest that the mechanisms underpinning their ability to induce improvements in memory are linked to the potential of absorbed flavonoids and their metabolites to interact with and modulate critical signalling pathways, transcription factors and gene and/or protein expression which control memory and learning processes in the hippocampus; the brain structure where spatial learning occurs. Overall, current evidence suggests that human translation of these animal investigations are warranted, as are further studies, to better understand the precise cause-and-effect relationship between flavonoid intake and cognitive outputs.
Resumo:
Tests of the new Rossby wave theories that have been developed over the past decade to account for discrepancies between theoretical wave speeds and those observed by satellite altimeters have focused primarily on the surface signature of such waves. It appears, however, that the surface signature of the waves acts only as a rather weak constraint, and that information on the vertical structure of the waves is required to better discriminate between competing theories. Due to the lack of 3-D observations, this paper uses high-resolution model data to construct realistic vertical structures of Rossby waves and compares these to structures predicted by theory. The meridional velocity of a section at 24° S in the Atlantic Ocean is pre-processed using the Radon transform to select the dominant westward signal. Normalized profiles are then constructed using three complementary methods based respectively on: (1) averaging vertical profiles of velocity, (2) diagnosing the amplitude of the Radon transform of the westward propagating signal at different depths, and (3) EOF analysis. These profiles are compared to profiles calculated using four different Rossby wave theories: standard linear theory (SLT), SLT plus mean flow, SLT plus topographic effects, and theory including mean flow and topographic effects. Our results support the classical theoretical assumption that westward propagating signals have a well-defined vertical modal structure associated with a phase speed independent of depth, in contrast with the conclusions of a recent study using the same model but for different locations in the North Atlantic. The model structures are in general surface intensified, with a sign reversal at depth in some regions, notably occurring at shallower depths in the East Atlantic. SLT provides a good fit to the model structures in the top 300 m, but grossly overestimates the sign reversal at depth. The addition of mean flow slightly improves the latter issue, but is too surface intensified. SLT plus topography rectifies the overestimation of the sign reversal, but overestimates the amplitude of the structure for much of the layer above the sign reversal. Combining the effects of mean flow and topography provided the best fit for the mean model profiles, although small errors at the surface and mid-depths are carried over from the individual effects of mean flow and topography respectively. Across the section the best fitting theory varies between SLT plus topography and topography with mean flow, with, in general, SLT plus topography performing better in the east where the sign reversal is less pronounced. None of the theories could accurately reproduce the deeper sign reversals in the west. All theories performed badly at the boundaries. The generalization of this method to other latitudes, oceans, models and baroclinic modes would provide greater insight into the variability in the ocean, while better observational data would allow verification of the model findings.
Resumo:
The ability to change an established stimulus–behavior association based on feedback is critical for adaptive social behaviors. This ability has been examined in reversal learning tasks, where participants first learn a stimulus–response association (e.g., select a particular object to get a reward) and then need to alter their response when reinforcement contingencies change. Although substantial evidence demonstrates that the OFC is a critical region for reversal learning, previous studies have not distinguished reversal learning for emotional associations from neutral associations. The current study examined whether OFC plays similar roles in emotional versus neutral reversal learning. The OFC showed greater activity during reversals of stimulus–outcome associations for negative outcomes than for neutral outcomes. Similar OFC activity was also observed during reversals involving positive outcomes. Furthermore, OFC activity is more inversely correlated with amygdala activity during negative reversals than during neutral reversals. Overall, our results indicate that the OFC is more activated by emotional than neutral reversal learning and that OFC's interactions with the amygdala are greater for negative than neutral reversal learning.
Resumo:
A discussion is given of plasma flows in the dawn and nightside high-latitude ionospheric regions during substorms occurring on a contracted auroral oval, as observed using the EISCAT CP-4-A experiment. Supporting data from the PACE radar, Greenland magnetometer chain, SAMNET magnetometers and geostationary satellites are compared to the EISCAT observations. On 4 October 1989 a weak substorm with initial expansion phase onset signatures at 0030 UT, resulted in the convection reversal boundary observed by EISCAT (at \sim0415 MLT) contracting rapidly poleward, causing a band of elevated ionospheric ion temperatures and a localised plasma density depletion. This polar cap contraction event is shown to be associated with various substorm signatures; Pi2 pulsations at mid-latitudes, magnetic bays in the midnight sector and particle injections at geosynchronous orbit. A similar event was observed on the following day around 0230 UT (\sim0515 MLT) with the unusual and significant difference that two convection reversals were observed, both contracting poleward. We show that this feature is not an ionospheric signature of two active reconnection neutral lines as predicted by the near-Earth neutral model before the plasmoid is “pinched off”, and present two alternative explanations in terms of (1) viscous and lobe circulation cells and (2) polar cap contraction during northward IMF. The voltage associated with the anti-sunward flow between the reversals reaches a maximum of 13 kV during the substorm expansion phase. This suggests it to be associated with the polar cap contraction and caused by the reconnection of open flux in the geomagnetic tail which has mimicked “viscous-like” momentum transfer across the magnetopause.
Resumo:
In experimental investigations of the effect of real incentives, accountability—the implicit or explicit expectation of a decision maker that she may have to justify her decisions in front of somebody else—is often confounded with the incentives themselves. This confounding of accountability with incentives makes causal attributions of any effects found problematic. We separate accountability and incentives, and find different effects. Accountability is found to reduce preference reversals between frames, for which incentives have no effect. Incentives on the other hand are found to reduce risk seeking for losses, where accountability has no effect. In a choice task between simple and compound events, accountability increases the preference for the simple event, while incentives have a weaker effect going in the opposite direction. It is thus shown that the confounding of accountability and incentives is relevant for studies on the effect of the latter, and that existing conclusions on the effect of incentives need to be reconsidered in light of this issue.
Resumo:
This study investigates flash flood forecast and warning communication, interpretation, and decision making, using data from a survey of 418 members of the public in Boulder, Colorado, USA. Respondents to the public survey varied in their perceptions and understandings of flash flood risks in Boulder, and some had misconceptions about flash flood risks, such as the safety of crossing fast-flowing water. About 6% of respondents indicated consistent reversals of US watch-warning alert terminology. However, more in-depth analysis illustrates the multi-dimensional, situationally dependent meanings of flash flood alerts, as well as the importance of evaluating interpretation and use of warning information along with alert terminology. Some public respondents estimated low likelihoods of flash flooding given a flash flood warning; these were associated with lower anticipated likelihood of taking protective action given a warning. Protective action intentions were also lower among respondents who had less trust in flash flood warnings, those who had not made prior preparations for flash flooding, and those who believed themselves to be safer from flash flooding. Additional analysis, using open-ended survey questions about responses to warnings, elucidates the complex, contextual nature of protective decision making during flash flood threats. These findings suggest that warnings can play an important role not only by notifying people that there is a threat and helping motivate people to take protective action, but also by helping people evaluate what actions to take given their situation.
Resumo:
A comparison tool has been developed by mapping the global GPS total electron content (TEC) and large coverage of ionospheric scintillations together on the geomagnetic latitude/magnetic local time coordinates. Using this tool, a comparison between large-scale ionospheric irregularities and scintillations are pursued during a geomagnetic storm. Irregularities, such as storm enhanced density (SED), middle-latitude trough and polar cap patches, are clearly identified from the TEC maps. At the edges of these irregularities, clear scintillations appeared but their behaviors were different. Phase scintillations (σsub{φ}) were almost always larger than amplitude scintillations (S4) at the edges of these irregularities, associated with bursty flows or flow reversals with large density gradients. An unexpected scintillation feature appeared inside the modeled auroral oval where S4 were much larger than σsub{φ}, most likely caused by particle precipitations around the exiting polar cap patches.