8 resultados para Result of an ecclesiastical council, convened at Exeter, N.H.

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the question of how many facets are needed to represent the energy balance of an urban area by developing simplified 3-, 2- and 1-facet versions of a 4-facet energy balance model of two-dimensional streets and buildings. The 3-facet model simplifies the 4-facet model by averaging over the canyon orientation, which results in similar net shortwave and longwave balances for both wall facets, but maintains the asymmetry in the heat fluxes within the street canyon. For the 2-facet model, on the assumption that the wall and road temperatures are equal, the road and wall facets can be combined mathematically into a single street-canyon facet with effective values of the heat transfer coefficient, albedo, emissivity and thermodynamic properties, without further approximation. The 1-facet model requires the additional assumption that the roof temperature is also equal to the road and wall temperatures. Idealised simulations show that the geometry and material properties of the walls and road lead to a large heat capacity of the combined street canyon, whereas the roof behaves like a flat surface with low heat capacity. This means that the magnitude of the diurnal temperature variation of the street-canyon facets are broadly similar and much smaller than the diurnal temperature variation of the roof facets. Consequently, the approximation that the street-canyon facets have similar temperatures is sound, and the road and walls can be combined into a single facet. The roof behaves very differently and a separate roof facet is required. Consequently, the 2-facet model performs similarly to the 4-facet model, while the 1-facet model does not. The models are compared with previously published observations collected in Mexico City. Although the 3- and 2-facet models perform better than the 1-facet model, the present models are unable to represent the phase of the sensible heat flux. This result is consistent with previous model comparisons, and we argue that this feature of the data cannot be produced by a single column model. We conclude that a 2-facet model is necessary, and for numerical weather prediction sufficient, to model an urban surface, and that this conclusion is robust and therefore applicable to more general geometries.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper introduces an international collaboration of EU and Asia in education, training and research in the field of sustainable built environment, which attempts to develop a network of practical and intellectual knowledge and training exchange between Chinese and European Universities in the field of sustainable building design and construction. The projects funded by the European Commission Asia Link program, UK Foreign & Commonwealth Office, British Council and the UK Engineering Physical Sciences Council (EPSRC) have been introduced. The projects have significant impacts on promoting sustainable development in built environment in China. The aim of this paper is to share the experiences with those who are interested and searching the ways to collaborate with China in education and research.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe a crystal structure, at atomic resolution (1.1 Å, 100 K), of a ruthenium polypyridyl complex bound to duplex DNA, in which one ligand acts as a wedge in the minor groove, resulting in the 51° kinking of the double helix. The complex cation Λ-[Ru(1,4,5,8-tetraazaphenanthrene)2(dipyridophenazine)]2+ crystallizes in a 1∶1 ratio with the oligonucleotide d(TCGGCGCCGA) in the presence of barium ions. Each complex binds to one duplex by intercalation of the dipyridophenazine ligand and also by semiintercalation of one of the orthogonal tetraazaphenanthrene ligands into a second symmetrically equivalent duplex. The result is noncovalent cross-linking and marked kinking of DNA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1 Pesticides are considered a threat to pollinators but little is known about the potential impacts of their widespread use on pollinators. Less still is known about the impacts on pollination, comprising the ecosystem service that pollinators provide to wildflowers and crops. 2 The present study measured flower visitation and pollination in an agricultural landscape, by placing potted flowering plants (Petunia sp.) in vine fields sprayed with a highly toxic insecticide (fenitrothion). During two sampling rounds, insect visitors to the petunias were observed and measures of pollination were recorded by counting and weighing seeds. 3 In the earlier sampling round, a lower species richness of insect visitors was observed in fields that had received an early application of insecticide. No negative impacts were found from later applications. The results obtained suggest a greater potential harm to insect pollinators and flower visitation as a result of insecticide application early in the season. 4 No reduction in pollination was found in fields that received an early insecticide application. Pollination was greater with two insecticide applications between sampling rounds rather than one application. 5 In the present study system, insecticide application had a negative effect on pollinators but a possible positive effect on pollination services. In some cases, it may be that actions for conserving biodiversity will not benefit pollination services to all plants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A mathematical model describing the heat budget of an irradiated medium is introduced. The one-dimensional form of the equations and boundary conditions are presented and analysed. Heat transport at one face of the slab occurs by absorption (and reflection) of an incoming beam of short-wave radiation with a fraction of this radiation penetrating into the body of the slab, a diffusive heat flux in the slab and a prescribed incoming heat flux term. The other face of the slab is immersed in its own melt and is considered to be a free surface. Here, temperature continuity is prescribed and evolution of the surface is determined by a Stefan condition. These boundary conditions are flexible enough to describe a range of situations such as a laser shining on an opaque medium, or the natural environment of polar sea ice or lake ice. A two-stream radiation model is used which replaces the simple Beer’s law of radiation attenuation frequently used for semi-infinite domains. The stationary solutions of the governing equations are sought and it is found that there exists two possible stationary solutions for a given set of boundary conditions and a range of parameter choices. It is found that the existence of two stationary solutions is a direct result of the model of radiation absorption, due to its effect on the albedo of the medium. A linear stability analysis and numerical calculations indicate that where two stationary solutions exist, the solution corresponding to a larger thickness is always stable and the solution corresponding to a smaller thickness is unstable. Numerical simulations reveal that when there are two solutions, if the slab is thinner than the smaller stationary thickness it will melt completely, whereas if the slab is thicker than the smaller stationary thickness it will evolve toward the larger stationary thickness. These results indicate that other mechanisms (e.g. wave-induced agglomeration of crystals) are necessary to grow a slab from zero initial thickness in the parameter regime that yields two stationary solutions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coronal mass ejections (CMEs) can be continuously tracked through a large portion of the inner heliosphere by direct imaging in visible and radio wavebands. White light (WL) signatures of solar wind transients, such as CMEs, result from Thomson scattering of sunlight by free electrons and therefore depend on both viewing geometry and electron density. The Faraday rotation (FR) of radio waves from extragalactic pulsars and quasars, which arises due to the presence of such solar wind features, depends on the line-of-sight magnetic field component B ∥ and the electron density. To understand coordinated WL and FR observations of CMEs, we perform forward magnetohydrodynamic modeling of an Earth-directed shock and synthesize the signatures that would be remotely sensed at a number of widely distributed vantage points in the inner heliosphere. Removal of the background solar wind contribution reveals the shock-associated enhancements in WL and FR. While the efficiency of Thomson scattering depends on scattering angle, WL radiance I decreases with heliocentric distance r roughly according to the expression Ir –3. The sheath region downstream of the Earth-directed shock is well viewed from the L4 and L5 Lagrangian points, demonstrating the benefits of these points in terms of space weather forecasting. The spatial position of the main scattering site r sheath and the mass of plasma at that position M sheath can be inferred from the polarization of the shock-associated enhancement in WL radiance. From the FR measurements, the local B ∥sheath at r sheath can then be estimated. Simultaneous observations in polarized WL and FR can not only be used to detect CMEs, but also to diagnose their plasma and magnetic field properties.