26 resultados para Resistance management

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Azoles and Succinate Dehydrogenase Inhibitors (SDHIs) are the main fungicides available for septoria tritici blotch control, causal agent Zymoseptoria tritici. Decline in azole sensitivity, in combination with European legislation, poses a threat to wheat production in Ireland. Azole fungicides select CYP51 mutations differentially; it was hypothesised that using combinations of azoles could be an effective anti-resistance tool. Naturally inoculated field experiments were carried out in order to understand the impacts of using combinations of azoles, epoxiconazole and metconazole, on azole sensitivity. Approximately 3700 isolates were isolated and their sensitivity to both azoles analysed. Findings showed that limiting the number of applications, by alternating each fungicide, slowed selection for reduced azole sensitivity. Limiting azole use by reducing doses did not reduce selection for decreased azole sensitivity. Although not complete, cross-resistance was observed between the two azoles, which will lead to general reduction in azole sensitivity. A sub-selection of isolates from each treatment at each location were analysed for changes in the CYP51 gene. Sequence analysis identified 49 combinations of mutations in the CYP51 gene, and three different inserts in the CYP51 promoter. Intragenic recombination also featured in these populations. Baseline studies of five new SDHIs were carried out on 209 naturally infected, non-SDHI-treated isolates. With the exception of fluopyram, cross-resistance was apparent between the SDHIs. Analysis of 2300 isolates found that when compared to the solo products, mixing the SDHI isopyrazam and the azole epoxiconazole increased epoxiconazole sensitivity, but had no apparent effect on isopyrazam sensitivity. SDHI resistance-conferring mutations were absent in the baseline and experimental isolates. As long as azoles are used, Z. tritici populations will continue to evolve towards resistance. Combining different modes-of-action, SDHIs and multi-sites, with azoles will relieve some of that selective pressure. To get the best out of available fungicides, they should be used in combination with host resistance and good crop management practices.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Cost effective methods are now available to identify physiological resistance in wild populations of Norway rat and House mice that are proving difficult to control. The new molecular methodology is a significant development for resistance management.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Introduction: Resistance to anticoagulants in Norway rats (Rattus norvegicus) and house mice (Mus domesticus) has been studied in the UK since the early 1960s. In no other country in the world is our understanding of resistance phenomena so extensive and profound. Almost every aspect of resistance in the key rodent target species has been examined in laboratory and field trials and results obtained by independent researchers have been published. It is the principal purpose of this document to present a short synopsis of this information. More recently, however, the development of genetical techniques has provided a definitive means of detection of resistant genotypes among pest rodent populations. Preliminary information from a number of such surveys will also be presented. Resistance in Norway rats: A total of nine different anticoagulant resistance mutations (single nucleotide polymorphisms or SNPs) are found among Norway rats in the UK. In no other country worldwide are present so many different forms of Norway rat resistance. Among these nine SNPs, five are known to confer on rats that carry them a significant degree of resistance to anticoagulant rodenticides. These mutations are: L128Q, Y139S, L120Q, Y139C and Y139F. The latter three mutations confer, to varying degrees, practical resistance to bromadiolone and difenacoum, the two second-generation anticoagulants in predominant use in the UK. It is the recommendation of RRAG that bromadiolone and difenacoum should not be used against rats carrying the L120Q, Y139C and Y139F mutations because this will promote the spread of resistance and jeopardise the long-term efficacy of anticoagulants. Brodifacoum, flocoumafen and difethialone are effective against these three genotypes but cannot presently be used because of the regulatory restriction that they can only be applied against rats that are living and feeding predominantly indoors. Our understanding of the geographical distribution of Norway rat resistance in incomplete but is rapidly increasing. In particular, the mapping of the focus of L120Q Norway rat resistance in central-southern England by DNA sequencing is well advanced. We now know that rats carrying this resistance mutation are present across a large part of the counties of Hampshire, Berkshire and Wiltshire, and the resistance spreads into Avon, Oxfordshire and Surrey. It is also found, perhaps as outlier foci, in south-west Scotland and East Sussex. L120Q is currently the most severe form of anticoagulant resistance found in Norway rats and is prevalent over a considerable part of central-southern England. A second form of advanced Norway rat resistance is conferred by the Y139C mutation. This is noteworthy because it occurs in at least four different foci that are widely geographically dispersed, namely in Dumfries and Galloway, Gloucestershire, Yorkshire and Norfolk. Once again, bromadiolone and difenacoum are not recommended for use against rats carrying this genotype and a concern of RRAG is that continued applications of resisted active substances may result in Y139C becoming more or less ubiquitous across much of the UK. Another type of advanced resistance, the Y139F mutation, is present in Kent and Sussex. This means that Norway rats, carrying some degree of resistance to bromadiolone and difenacoum, are now found from the south coast of Kent, west into the city of Bristol, to Yorkshire in the north-east and to the south-west of Scotland. This difficult situation can only deteriorate further where these three genotypes exist and resisted anticoagulants are predominantly used against them. Resistance in house mice: House mouse is not so well understood but the presence in the UK of two resistant genotypes, L128S and Y139C, is confirmed. House mice are naturally tolerant to anticoagulants and such is the nature of this tolerance, and the presence of genetical resistance, that house mice resistant to the first-generation anticoagulants are considered to be widespread in the UK. Consequently, baits containing warfarin, sodium warfarin, chlorophacinone and coumatetralyl are not approved for use against mice. This regulatory position is endorsed by RRAG. Baits containing brodifacoum, flocoumafen and difethialone are effective against house mice and may be applied in practice because house mouse infestations are predominantly indoors. There are some reports of resistance among mice in some areas to the second-generation anticoagulant bromadiolone, while difenacoum remains largely efficacious. Alternatives to anticoagulants: The use of habitat manipulation, that is the removal of harbourage, denial of the availability of food and the prevention of ingress to structures, is an essential component of sustainable rodent pest management. All are of importance in the management of resistant rodents and have the advantage of not selecting for resistant genotypes. The use of these techniques may be particularly valuable in preventing the build-up of rat infestations. However, none can be used to remove any sizeable extant rat infestation and for practical reasons their use against house mice is problematic. Few alternative chemical interventions are available in the European Union because of the removal from the market of zinc phosphide, calciferol and bromethalin. Our virtual complete reliance on the use of anticoagulants for the chemical control of rodents in the UK, and more widely in the EU, calls for improved schemes for resistance management. Of course, these might involve the use of alternatives to anticoagulant rodenticides. Also important is an increasing knowledge of the distribution of resistance mutations in rats and mice and the use of only fully effective anticoagulants against them.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND Methyl benzimidazole carbamate (MBC) fungicides are used to control the oilseed rape pathogen Pyrenopeziza brassicae. Resistance to MBCs has been reported in P. brassicae, but the molecular mechanism(s) associated with reductions in sensitivity have not been verified in this species. Elucidation of the genetic changes responsible for resistance, hypothesised to be target-site mutations in β-tubulin, will enable resistance diagnostics and thereby inform resistance management strategies. RESULTS P. brassicae isolates were classified as sensitive, moderately resistant or resistant to MBCs. Crossing P. brassicae isolates of different MBC sensitivities indicated that resistance was conferred by a single gene. The MBC-target encoding gene β-tubulin was cloned and sequenced. Reduced MBC sensitivity of field isolates correlated with β-tubulin amino acid substitutions L240F and E198A. The highest level of MBC resistance was measured for isolates carrying E198A. Negative cross-resistance between MBCs and the fungicides diethofencarb and zoxamide was only measured in E198A isolates. PCR-RFLP was used to screen isolates for the presence of L240F and E198A. The substitutions E198G and F200Y were also detected in DNA samples from P. brassicae populations after cloning and sequencing of PCR products. The frequencies of L240F and E198A in different P. brassicae populations were quantified by pyrosequencing. There were no differences in the frequencies of these alleles between P. brassicae populations sampled from different locations or after fungicide treatment regimes. CONCLUSIONS The molecular mechanisms affecting sensitivity to MBCs in P. brassicae have been identified. Pyrosequencing assays are a powerful tool for quantifying fungicide-resistant alleles in pathogen populations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two field trials were conducted using established apple (Malus cv. Golden Delicious) and pear (Pyrus communis 'Williams' Bon Chretien') to assess the efficacy of three commercially available systemic inducing resistance (SIR) products, Messenger (a.i. Harpin protein), Phoenix (a.i. Potassium phosphite) and Rigel (a.i. Salicylic acid derivative) applied at four different growth stages of tree development (bud break, green cluster, 90% petal fall, early fruitlet) against the foliar pathogens Venturia inaequalis and Venturia pirina which cause apple and pear scab respectively. A conventional synthetic fungicide (penconazole) used within the UK for apple and pear scab control was included for comparison. Little efficacy as scab protectants was demonstrated when each SIR product and penconazole was applied at only two growth stages (bud break, green cluster). However when the above compounds were applied at three or more growth stages efficacy as scab protectants was confirmed. The synthetic fungicide penconazole provided greatest protection against apple and pear scab in both the 2006 and 2007 field trials. There was little difference in the magnitude of scab protection conferred by each SIR agent. Results suggest application of at least three sprays during bud break to early fruitlet formation with an appropriate SIR agent may provide a useful addition to existing methods of apple and pear scab management under field conditions. (C) 2009 Published by Elsevier Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It makes economic sense to use as little fungicide as possible on a crop. In many settings, it is common to apply less than the manufacturer's recommended dose. If sources of disease are scarce, or conditions are unsuitable for it to increase, the reduced control from a low dose may be adequate. In other cases, a big reduction in dose may cause little reduction in control, again permitting savings - especially for growers prepared to run a little risk. But the label recommendations for most fungicides state that to avoid resistance, a full dose must always be used. Are individual cost-savings therefore endangering everyone's access to an exceptionally useful tool? The emergence of fungicide resistance is evolution in action. In all cases, it involves the genetic replacement of the original susceptible population of the pathogen by a new population with genetically distinct biochemistry, which confers resistance. The resistant biochemistry originates in rare genetic mutations, so rare that initially the population is hardly altered. Replacement of susceptible forms by resistant ones happens because, with fungicide present, the resistant form multiplies more rapidly than the susceptible form. The key point to notice is that only the relative rates of multiplication of the resistant and susceptible types are involved in the evolution of resistance. The absolute rates are irrelevant.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigated the relationship between the severity and incidence of resistance among Norway rats (Rattus norvegicus) on a farm in Wales and the subsequent outcome of a practical rodent control operation. Bromadiolone resistance factors were estimated for rats trapped on the farm using the blood clotting response test, and were found to be 2 to 3 for male rats and approximately 6 for females. The incidence of resistance in the rat population was high. Infestation size was estimated by census baiting and tracking, and was found to be substantial, with a maximum of 6.5 kg of bait being eaten on a single night. A proprietary rodenticide (Deadline (TM)), containing 0.005% bromadiolone, was used to control the infestation. The duration of baiting was 35 days and, according to the two methods of assessment used, treatment success was in the region of 87 and 93%. No evidence was observed of a significant impact of resistance on the rat control operation, and the remaining rats of this very heavy infestation would probably have been controlled if baiting had continued for longer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The presumption that the synthesis of 'defence' compounds in plants must incur some 'trade-off' or penalty in terms of annual crop yields has been used to explain observed inverse correlations between resistance to herbivores and rates of growth or photosynthesis. An analysis of the cost of making secondary compounds suggests that this accounts for only a small part of the overall carbon budget of annual crop plants. Even the highest reported amounts of secondary metabolites found in different crop species (flavonoids, allylisothiocyanates, hydroxamic acids, 2-tridecanone) represent a carbon demand that can be satisfied by less than an hour's photosynthesis. Similar considerations apply to secondary compounds containing nitrogen or sulphur, which are unlikely to represent a major investment compared to the cost of making proteins, the major demand for these elements. Decreases in growth and photosynthesis in response to stress are more likely the result of programmed down-regulation. Observed correlations between yield and low contents of unpalatable or toxic compounds may be the result of parallel selection during the refinement of crop species by humans.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With uncertainty concerning the future of set-aside, over-wintering stubble is an attractive management option within the agri-environment scheme. Over-wintering stubbles could be included as part of rotational set-aside, benefiting farmland biodiversity. However, there is little research on managing stubbles to maximise weed seed loss, so farmers may be reluctant to adopt this option for fear of increased weed infestation. The purpose of this investigation is to develop effective management of over-wintering stubbles to minimise pernicious grass weeds in sequential crops, whilst maintaining beneficial species diversity. Research has focused on four annual grass-weeds (Alopecurus myosuroides, Anisantha sterilis, Bromus commutatus and Lolium multiflorum) of increased occurrence and/or resistance to herbicides. Hitherto, work has concentrated on the effects of stubble manipulation on weed seed germination and mortality, in particular by straw spreading or removal after harvest. The dynamics of artificially inoculated weed populations were monitored from harvest until early spring. Results obtained indicate that where straw is retained on the soil surface, it provides a favourable microclimate for seed depletion of Anisantha sterilis and Bromus commutatus through germination. Conversely, greater depletion of Alopecurus myosuroides and Lolium multiflorum seed occurred from stubbles in which a straw layer was absent. Seed recovery work provided evidence that most seeds remaining ungerminated throughout the trial period were still viable, but a large proportion of the seeds sown were unaccounted for. As these species are not generally favoured as a food source, the as yet unknown fate of these seeds has implications for subsequent grass-weed infestations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a reappraisal of the blood clotting response (BCR) tests for anticoagulant rodenticides, and proposes a standardised methodology for identifying and quantifying physiological resistance in populations of rodent species. The standardisation is based on the International Normalised Ratio, which is standardised against a WHO international reference preparation of thromboplastin, and allows comparison of data obtained using different thromboplastin reagents. ne methodology is statistically sound, being based on the 50% response, and has been validated against the Norway rat (Rattus norvegicus) and the house mouse (Mus domesticus). Susceptibility baseline data are presented for warfarin, diphacinone, chlorophacinone and coumatetralyl against the Norway rat, and for bromadiolone, difenacoum, difethialone, flocoumafen and brodifacoum against the Norway rat and the house mouse. A 'test dose' of twice the ED50 can be used for initial identification of resistance, and will provide a similar level of information to previously published methods. Higher multiples of the ED50 can be used to assess the resistance factor, and to predict the likely impact on field control.