4 resultados para Residential variation statistics
em CentAUR: Central Archive University of Reading - UK
Resumo:
Long-term monitoring of forest soils as part of a pan-European network to detect environmental change depends on an accurate determination of the mean of the soil properties at each monitoring event. Forest soil is known to be very variable spatially, however. A study was undertaken to explore and quantify this variability at three forest monitoring plots in Britain. Detailed soil sampling was carried out, and the data from the chemical analyses were analysed by classical statistics and geostatistics. An analysis of variance showed that there were no consistent effects from the sample sites in relation to the position of the trees. The variogram analysis showed that there was spatial dependence at each site for several variables and some varied in an apparently periodic way. An optimal sampling analysis based on the multivariate variogram for each site suggested that a bulked sample from 36 cores would reduce error to an acceptable level. Future sampling should be designed so that it neither targets nor avoids trees and disturbed ground. This can be achieved best by using a stratified random sampling design.
Resumo:
Crop production is inherently sensitive to fluctuations in weather and climate and is expected to be impacted by climate change. To understand how this impact may vary across the globe many studies have been conducted to determine the change in yield of several crops to expected changes in climate. Changes in climate are typically derived from a single to no more than a few General Circulation Models (GCMs). This study examines the uncertainty introduced to a crop impact assessment when 14 GCMs are used to determine future climate. The General Large Area Model for annual crops (GLAM) was applied over a global domain to simulate the productivity of soybean and spring wheat under baseline climate conditions and under climate conditions consistent with the 2050s under the A1B SRES emissions scenario as simulated by 14 GCMs. Baseline yield simulations were evaluated against global country-level yield statistics to determine the model's ability to capture observed variability in production. The impact of climate change varied between crops, regions, and by GCM. The spread in yield projections due to GCM varied between no change and a reduction of 50%. Without adaptation yield response was linearly related to the magnitude of local temperature change. Therefore, impacts were greatest for countries at northernmost latitudes where warming is predicted to be greatest. However, these countries also exhibited the greatest potential for adaptation to offset yield losses by shifting the crop growing season to a cooler part of the year and/or switching crop variety to take advantage of an extended growing season. The relative magnitude of impacts as simulated by each GCM was not consistent across countries and between crops. It is important, therefore, for crop impact assessments to fully account for GCM uncertainty in estimating future climates and to be explicit about assumptions regarding adaptation.
Resumo:
Peak residential electricity demand takes place when people conduct simultaneous activities at specific times of the day. Social practices generate patterns of demand and can help understand why, where, with whom and when energy services are used at peak time. The aim of this work is to make use of recent UK time use and locational data to better understand: (i) how a set of component indices on synchronisation, variation, sharing and mobility indicate flexibility to shift demand; and (ii) the links between people’s activities and peaks in greenhouse gases’ intensities. The analysis is based on a recent UK time use dataset, providing 1 minute interval data from GPS devices and 10 minute data from diaries and questionnaires for 175 data days comprising 153 respondents. Findings show how greenhouse gases’ intensities and flexibility to shift activities vary throughout the day. Morning peaks are characterised by high levels of synchronisation, shared activities and occupancy, with low variation of activities. Evening peaks feature low synchronisation, and high spatial mobility variation of activities. From a network operator perspective, the results indicate that periods with lower flexibility may be prone to more significant local network loads due to the synchronization of electricity-demanding activities.
Resumo:
One of the most significant sources of greenhouse gas (GHG) emissions in Canada is the buildings sector, with over 30% of national energy end-use occurring in buildings. Energy use must be addressed to reduce emissions from the buildings sector, as nearly 70% of all Canada’s energy used in the residential sector comes from fossil sources. An analysis of GHG emissions from the existing residential building stock for the year 2010 has been conducted for six Canadian cities with different climates and development histories: Vancouver, Edmonton, Winnipeg, Toronto, Montreal, and Halifax. Variation across these cities is seen in their 2010 GHG emissions, due to climate, characteristics of the building stock, and energy conversion technologies, with Halifax having the highest per capita emissions at 5.55 tCO2e/capita and Montreal having the lowest at 0.32 tCO2e/capita. The importance of the provincial electricity grid’s carbon intensity is emphasized, along with era of construction, occupancy, floor area, and climate. Approaches to achieving deep emissions reductions include innovative retrofit financing and city level residential energy conservation by-laws; each region should seek location-appropriate measures to reduce energy demand within its residential housing stock, as well as associated GHG emissions.