12 resultados para Renewables

em CentAUR: Central Archive University of Reading - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper provides an overview of the reduction targets that Ireland has set in the context of decarbonising their electricity generation through the use of renewables. The main challenges associated with integrating high levels (>20% of installed capacity) of non-dispatchable renewable generation are identified. The rising complexity of the challenge as renewable penetration levels increase is highlighted. A list of relevant research questions is then proposed, and an overview is given into the previous work that has gone into answering some of them. In particular, studies into the Irish energy market are identified, the current knowledge gap is described, and areas of necessary future research are suggested

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The variability of renewable energy is widely recognised as a challenge for integrating high levels of renewable generation into electricity systems. However, to explore its implications effectively, variability itself should first be clearly understood. This is particularly true for national electricity systems with high planned penetration of renewables and limited interconnection such as the UK. Variability cannot be considered as a distinct resource property with a single measurable parameter, but is a multi-faceted concept best described by a range of distinct characteristics. This paper identifies relevant characteristics of variability, and considers their implications for energy research. This is done through analysis of wind, solar and tidal current resources, with a primary focus on the Bristol Channel region in the UK. The relationship with electricity demand is considered, alongside the potential benefits of resource diversity. Analysis is presented in terms of persistence, distribution, frequency and correlation between supply and demand. Marked differences are seen between the behaviours of the individual resources, and these give rise to a range of different implications for system integration. Wind shows strong persistence and a useful seasonal pattern, but also a high spread in energy levels at timescales beyond one or two days. The solar resource is most closely correlated with electricity demand, but is undermined by night-time zero values and an even greater spread of monthly energy delivered than wind. In contrast, the tidal resource exhibits very low persistence, but also much greater consistency in energy values assessed across monthly time scales. Whilst this paper focuses primarily on the behaviour of resources, it is noted that discrete variability characteristics can be related to different system impacts. Persistence and predictability are relevant for system balancing, whereas statistical distribution is more relevant when exploring issues of asset utilisation and energy curtailment. Areas of further research are also identified, including the need to assess the value of predictability in relation to other characteristics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermal generation is a vital component of mature and reliable electricity markets. As the share of renewable electricity in such markets grows, so too do the challenges associated with its variability. Proposed solutions to these challenges typically focus on alternatives to primary generation, such as energy storage, demand side management, or increased interconnection. Less attention is given to the demands placed on conventional thermal generation or its potential for increased flexibility. However, for the foreseeable future, conventional plants will have to operate alongside new renewables and have an essential role in accommodating increasing supply-side variability. This paper explores the role that conventional generation has to play in managing variability through the sub-system case study of Northern Ireland, identifying the significance of specific plant characteristics for reliable system operation. Particular attention is given to the challenges of wind ramping and the need to avoid excessive wind curtailment. Potential for conflict is identified with the role for conventional plant in addressing these two challenges. Market specific strategies for using the existing fleet of generation to reduce the impact of renewable resource variability are proposed, and wider lessons from the approach taken are identified.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The paper outlines EU policy on bioenergy, including biofuels, in the context of its policy initiatives to promote renewable energy to combat greenhouse gas emissions and climate change. The EU's Member States are responsible for implementing EU policy: thus, the UK's Renewables Obligation on electricity suppliers and its Renewable Transport Fuel Obligation and road-fuel tax rebates are examined. It is unlikely that EU policy is in conflict with the WTO Agreement on Agriculture or that on Subsidies and Countervailing Measures, but its provisions on environmental sustainability criteria could be problematic.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Of the technologies currently available for producing energy from renewable sources in the British climate all except one depend on a single ingredient, namely land. Therefore other than offshore wind generation, which has been slow and expensive to establish, renewables have had to be derived almost entirely from the land, whether as sites for turbines or areas on which to grow feedstocks for biomass and biofuels. Of these, only wind turbines have been developed in any number while economic conditions have until now been unfavourable for biomass and biofuel. The UK is unlikely to meet its present targets under the Kyoto agreement, due to a mixture of limited funding and problems of policy. Peter Prag examines the present position and the potential outlook.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The development of biofuels has been one of the most visible and controversial manifestations of the use of biomass for energy. Biofuels policies in the EU, US and Brazil have been particularly important for the development of the industry in these three important markets. All three have used a variety of measures, including consumption or use mandates, tax incentives and import protection to promote the production and use of biofuels. Despite this, it is uncertain whether the EU will achieve its objective of a 10 per cent share for renewables in transport fuels by 2020. The US is also running into difficulties in meeting consumption mandates for biofuels. Questions are being raised about the continuation of tax credits and import protection. Brazil has liberalised its domestic ethanol market and adopted a more market-oriented approach to biofuels policy, but the management of domestic petroleum prices and the inter-relationship between the sugar market and ethanol production are important factors affecting domestic consumption and exports. In both the EU and the US an ongoing debate about the benefits of reliance on biofuels derived from food crops and concern about the efficacy of current biofuels policies may put their future in doubt.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The development of an Artificial Neural Network model of UK domestic appliance energy consumption is presented. The model uses diary-style appliance use data and a survey questionnaire collected from 51 households during the summer of 2010. It also incorporates measured energy data and is sensitive to socioeconomic, physical dwelling and temperature variables. A prototype model is constructed in MATLAB using a two layer feed forward network with backpropagation training and has a12:10:24architecture.Model outputs include appliance load profiles which can be applied to the fields of energy planning (micro renewables and smart grids), building simulation tools and energy policy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Meteorological (met) station data is used as the basis for a number of influential studies into the impacts of the variability of renewable resources. Real turbine output data is not often easy to acquire, whereas meteorological wind data, supplied at a standardised height of 10 m, is widely available. This data can be extrapolated to a standard turbine height using the wind profile power law and used to simulate the hypothetical power output of a turbine. Utilising a number of met sites in such a manner can develop a model of future wind generation output. However, the accuracy of this extrapolation is strongly dependent on the choice of the wind shear exponent alpha. This paper investigates the accuracy of the simulated generation output compared to reality using a wind farm in North Rhins, Scotland and a nearby met station in West Freugh. The results show that while a single annual average value for alpha may be selected to accurately represent the long term energy generation from a simulated wind farm, there are significant differences between simulation and reality on an hourly power generation basis, with implications for understanding the impact of variability of renewables on short timescales, particularly system balancing and the way that conventional generation may be asked to respond to a high level of variable renewable generation on the grid in the future.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Chartered Institute of Building Service Engineers (CIBSE) produced a technical memorandum (TM36) presenting research on future climate impacting building energy use and thermal comfort. One climate projection for each of four CO2 emissions scenario were used in TM36, so providing a deterministic outlook. As part of the UK Climate Impacts Programme (UKCIP) probabilistic climate projections are being studied in relation to building energy simulation techniques. Including uncertainty in climate projections is considered an important advance to climate impacts modelling and is included in the latest UKCIP data (UKCP09). Incorporating the stochastic nature of these new climate projections in building energy modelling requires a significant increase in data handling and careful statistical interpretation of the results to provide meaningful conclusions. This paper compares the results from building energy simulations when applying deterministic and probabilistic climate data. This is based on two case study buildings: (i) a mixed-mode office building with exposed thermal mass and (ii) a mechanically ventilated, light-weight office building. Building (i) represents an energy efficient building design that provides passive and active measures to maintain thermal comfort. Building (ii) relies entirely on mechanical means for heating and cooling, with its light-weight construction raising concern over increased cooling loads in a warmer climate. Devising an effective probabilistic approach highlighted greater uncertainty in predicting building performance, depending on the type of building modelled and the performance factors under consideration. Results indicate that the range of calculated quantities depends not only on the building type but is strongly dependent on the performance parameters that are of interest. Uncertainty is likely to be particularly marked with regard to thermal comfort in naturally ventilated buildings.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Demand response is believed by some to become a major contributor towards system balancing in future electricity networks. Shifting or reducing demand at critical moments can reduce the need for generation capacity, help with the integration of renewables, support more efficient system operation and thereby potentially lead to cost and carbon reductions for the entire energy system. In this paper we review the nature of the response resource of consumers from different non-domestic sectors in the UK, based on extensive half hourly demand profiles and observed demand responses. We further explore the potential to increase the demand response capacity through changes in the regulatory and market environment. The analysis suggests that present demand response measures tend to stimulate stand-by generation capacity in preference to load shifting and we propose that extended response times may favour load based demand response, especially in sectors with significant thermal loads.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biomass is an important source of energy in Thailand and is currently the main renewable energy source, accounting for 40% of the renewable energy used. The Department of Alternative Energy and E�ciency (DEDE), Ministry of Thailand, has been promoting the use of renewable energy in Thailand for the past decade. The new target for renewable energy usage in the country is set at 25% of the �nal energy demand in 2021. Thailand is the world’s fourth largest producer of cassava and this results in the production of signi�cant amounts of cassava rhizome which is a waste product. Cassava rhizome has the potential to be co-�red with coal for the production of heat and power. With suitable co-�ring ratios, little modi�cation will be required in the co-�ring technology. This review article is concerned with an investigation of the feasibility of co-�ring cassava rhizome in a combined heat and power system for a cassava based bio-ethanol plant in Thailand. Enhanced use of cassava rhizome for heat and power production could potentially contribute to a reduction of greenhouse gas emissions and costs, and would help the country to meet the 2021 renewable energy target.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

India is increasingly investing in renewable technology to meet rising energy demands, with hydropower and other renewables comprising one-third of current installed capacity. Installed wind-power is projected to increase 5-fold by 2035 (to nearly 100GW) under the International Energy Agency’s New Policies scenario. However, renewable electricity generation is dependent upon the prevailing meteorology, which is strongly influenced by monsoon variability. Prosperity and widespread electrification are increasing the demand for air conditioning, especially during the warm summer. This study uses multi-decadal observations and meteorological reanalysis data to assess the impact of intraseasonal monsoon variability on the balance of electricity supply from wind-power and temperature-related demand in India. Active monsoon phases are characterised by vigorous convection and heavy rainfall over central India. This results in lower temperatures giving lower cooling energy demand, while strong westerly winds yield high wind-power output. In contrast, monsoon breaks are characterised by suppressed precipitation, with higher temperatures and hence greater demand for cooling, and lower wind-power output across much of India. The opposing relationship between wind-power supply and cooling demand during active phases (low demand, high supply) and breaks (high demand, low supply) suggests that monsoon variability will tend to exacerbate fluctuations in the so-called demand-net-wind (i.e., electrical demand that must be supplied from non-wind sources). This study may have important implications for the design of power systems and for investment decisions in conventional schedulable generation facilities (such as coal and gas) that are used to maintain the supply/demand balance. In particular, if it is assumed (as is common) that the generated wind-power operates as a price-taker (i.e., wind farm operators always wish to sell their power, irrespective of price) then investors in conventional facilities will face additional weather-volatility through the monsoonal impact on the length and frequency of production periods (i.e. their load-duration curves).