18 resultados para Relaxation time

em CentAUR: Central Archive University of Reading - UK


Relevância:

70.00% 70.00%

Publicador:

Resumo:

According to linear response theory, all relaxation functions in the linear regime can be obtained using time correlation functions calculated under equilibrium. In this paper, we demonstrate that the cross correlations make a significant contribution to the partial stress relaxation functions in polymer melts. We present two illustrations in the context of polymer rheology using (1) Brownian dynamics simulations of a single chain model for entangled polymers, the slip-spring model, and (2) molecular dynamics simulations of a multichain model. Using the single chain model, we analyze the contribution of the confining potential to the stress relaxation and the plateau modulus. Although the idea is illustrated with a particular model, it applies to any single chain model that uses a potential to confine the motion of the chains. This leads us to question some of the assumptions behind the tube theory, especially the meaning of the entanglement molecular weight obtained from the plateau modulus. To shed some light on this issue, we study the contribution of the nonbonded excluded-volume interactions to the stress relaxation using the multichain model. The proportionality of the bonded/nonbonded contributions to the total stress relaxation (after a density dependent "colloidal" relaxation time) provides some insight into the success of the tube theory in spite of using questionable assumptions. The proportionality indicates that the shape of the relaxation spectrum can indeed be reproduced using the tube theory and the problem is reduced to that of finding the correct prefactor. (c) 2007 American Institute of Physics

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We have established the surface tension relaxation time in the liquid-solid interfaces of Lennard-Jones (LJ) liquids by means of direct measurements in molecular dynamics (MD) simulations. The main result is that the relaxation time is found to be almost independent of the molecular structures and viscosity of the liquids (at seventy-fold change) used in our study and lies in such a range that in slow hydrodynamic motion the interfaces are expected to be at equilibrium. The implications of our results for the modelling of dynamic wetting processes and interpretation of dynamic contact angle data are discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A number of recent experiments suggest that, at a given wetting speed, the dynamic contact angle formed by an advancing liquid-gas interface with a solid substrate depends on the flow field and geometry near the moving contact line. In the present work, this effect is investigated in the framework of an earlier developed theory that was based on the fact that dynamic wetting is, by its very name, a process of formation of a new liquid-solid interface (newly “wetted” solid surface) and hence should be considered not as a singular problem but as a particular case from a general class of flows with forming or/and disappearing interfaces. The results demonstrate that, in the flow configuration of curtain coating, where a liquid sheet (“curtain”) impinges onto a moving solid substrate, the actual dynamic contact angle indeed depends not only on the wetting speed and material constants of the contacting media, as in the so-called slip models, but also on the inlet velocity of the curtain, its height, and the angle between the falling curtain and the solid surface. In other words, for the same wetting speed the dynamic contact angle can be varied by manipulating the flow field and geometry near the moving contact line. The obtained results have important experimental implications: given that the dynamic contact angle is determined by the values of the surface tensions at the contact line and hence depends on the distributions of the surface parameters along the interfaces, which can be influenced by the flow field, one can use the overall flow conditions and the contact angle as a macroscopic multiparametric signal-response pair that probes the dynamics of the liquid-solid interface. This approach would allow one to investigate experimentally such properties of the interface as, for example, its equation of state and the rheological properties involved in the interface’s response to an external torque, and would help to measure its parameters, such as the coefficient of sliding friction, the surface-tension relaxation time, and so on.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A new method of measuring the total conductivity of atmospheric air is described. It depends on determination of the electrical relaxation time of a horizontal wire, mounted between two insulators, which is initially grounded and then allowed to charge freely. The total air conductivity derived is compared with that from an ion mobility spectrometer. Results from the two techniques agreed to within 1.2 fS m(-1). (c) 2006 American Institute of Physics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Rheology of milk foams generated by steam injection was studied during the transient destabilization process using steady flow and dynamic oscillatory techniques: yield stress (τ_y) values were obtained from a stress ramp (0.2 to 25 Pa) and from strain amplitude sweep (0.001 to 3 at 1 Hz of frequency); elastic (G') and viscous (G") moduli were measured by frequency sweep (0.1 to 150 Hz at 0.05 of strain); and the apparent viscosity (η_a) was obtained from the flow curves generated from the stress ramp. The effect of plate roughness and the sweep time on τ_y was also assessed. Yield stress was found to increase with plate roughness whereas it decreased with the sweep time. The values of yield stress and moduli—G' and G"—increased during foam destabilization as a consequence of the changes in foam properties, especially the gas volume fraction, φ, and bubble size, R_32 (Sauter mean bubble radius). Thus, a relationship between τ_y, φ, R_32, and σ (surface tension) was established. The changes in the apparent viscosity, η, showed that the foams behaved like a shear thinning fluid beyond the yield point, fitting the modified Cross model with the relaxation time parameter (λ) also depending on the gas volume fraction. Overall, it was concluded that the viscoelastic behavior of the foam below the yield point and liquid-like behavior thereafter both vary during destabilization due to changes in the foam characteristics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The dielectric constant, epsilon', and the dielectric loss, epsilon'', for gelatin films were measured in the glassy and rubbery states over a frequency range from 20 Hz to 10 MHz; epsilon' and epsilon'' were transformed into M* formalism (M* = 1/(epsilon' - i epsilon'') = M' + iM''; i, the imaginary unit). The peak of epsilon'' was masked probably due to dc conduction, but the peak of M'', e.g. the conductivity relaxation, for the gelatin used was observed. By fitting the M'' data to the Havriliak-Negami type equation, the relaxation time, tauHN, was evaluated. The value of the activation energy, Etau, evaluated from an Arrhenius plot of 1/tauHN, agreed well with that of Esigma evaluated from the DC conductivity sigma0 both in the glassy and rubbery states, indicating that the conductivity relaxation observed for the gelatin films was ascribed to ionic conduction. The value of the activation energy in the glassy state was larger than that in the rubbery state.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

X-ray Rheology is an experimental technique which uses time-ressolved x-ray scattering as probe of the molecular level structural reorganisation which accompanies flow. It provides quantitative information on the direction alignment and on the level of global orientation. This information is very helpful in interpreting the classic rheological data on liquid crystal polymers. In this research we use data obtained from a cellulose derivate which exhibits a thermotropic liquid crystal phase. We show how increased shear rates lead to a rapid rise in the global orientation and we related this to therories of flow in liquid crystal polymers from the literature. We show that the relaxation time is independent of the prior shear rate.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The situation considered is that of a zonally symmetric model of the middle atmosphere subject to a given quasi-steady zonal force F̄, conceived to be the result of irreversible angular momentum transfer due to the upward propagation and breaking of Rossby and gravity waves together with any other dissipative eddy effects that may be relevant. The model's diabatic heating is assumed to have the qualitative character of a relaxation toward some radiatively determined temperature field. To the extent that the force F̄ may be regarded as given, and the extratropical angular momentum distribution is realistic, the extratropical diabatic mass flow across a given isentropic surface may be regarded as controlled exclusively by the F̄ distribution above that surface (implying control by the eddy dissipation above that surface and not, for instance, by the frequency of tropopause folding below). This “downward control” principle expresses a critical part of the dynamical chain of cause and effect governing the average rate at which photochemical products like ozone become available for folding into, or otherwise descending into, the extratropical troposphere. The dynamical facts expressed by the principle are also relevant, for instance, to understanding the seasonal-mean rate of upwelling of water vapor to the summer mesopause, and the interhemispheric differences in stratospheric tracer transport. The robustness of the principle is examined when F̄ is time-dependent. For a global-scale, zonally symmetric diabatic circulation with a Brewer-Dobson-like horizontal structure given by the second zonally symmetric Hough mode, with Rossby height HR = 13 km in an isothermal atmosphere with density scale height H = 7 km, the vertical partitioning of the unsteady part of the mass circulation caused by fluctuations in F̄ confined to a shallow layer LF̄ is always at least 84% downward. It is 90% downward when the force fluctuates sinusoidally on twice the radiative relaxation timescale and 95% if five times slower. The time-dependent adjustment when F̄ is changed suddenly is elucidated, extending the work of Dickinson (1968), when the atmosphere is unbounded above and below. Above the forcing, the adjustment is characterized by decay of the meridional mass circulation cell at a rate proportional to the radiative relaxation rate τr−1 divided by {1 + (4H2/HR2)}. This decay is related to the boundedness of the angular momentum that can be taken up by the finite mass of air above LF̄ without causing an ever-increasing departure from thermal wind balance. Below the forcing, the meridional mass circulation cell penetrates downward at a speed τr−1 HR2/H. For the second Hough mode, the time for downward penetration through one density scale height is about 6 days if the radiative relaxation time is 20 days, the latter being representative of the lower stratosphere. At any given altitude, a steady state is approached. The effect of a rigid lower boundary on the time-dependent adjustment is also considered. If a frictional planetary boundary layer is present then a steady state is ultimately approached everywhere, with the mass circulation extending downward from LF̄ and closing via the boundary layer. Satellite observations of temperature and ozone are used in conjunction with a radiative transfer scheme to estimate the altitudes from which the lower stratospheric diabatic vertical velocity is controlled by the effective F̄ in the real atmosphere. The data appear to indicate that about 80% of the effective control is usually exerted from below 40 km but with significant exceptions up to 70 km (in the high latitude southern hemispheric winter). The implications for numerical modelling of chemical transport are noted.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Various complex oscillatory processes are involved in the generation of the motor command. The temporal dynamics of these processes were studied for movement detection from single trial electroencephalogram (EEG). Autocorrelation analysis was performed on the EEG signals to find robust markers of movement detection. The evolution of the autocorrelation function was characterised via the relaxation time of the autocorrelation by exponential curve fitting. It was observed that the decay constant of the exponential curve increased during movement, indicating that the autocorrelation function decays slowly during motor execution. Significant differences were observed between movement and no moment tasks. Additionally, a linear discriminant analysis (LDA) classifier was used to identify movement trials with a peak accuracy of 74%.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The relations between the rheological and electrical properties of NaY zeolite electrorheological fluid and its solid phase are studied. It is found that then exist complex relations between its electrical and theological properties. The temperature spectra of dielectric properties of the fluid under high AC electric field are strongly field strength dependent. The relation between the DC conductivity of the fluid and the exciting electric field is experimentally presented as log sigma =A+BE1/2, when A is a strong function, but B, a very weak function of temperature. The shear stress of the fluid under a fixed electric field and temperature decreases with shear rate. A relaxation time for the adsorbed charges is estimated to be about 0.3 to 6.6 s in the temperature range from 280 to 380 K. The relaxation time qualitatively corresponds to the shear rate at which the shear stress begins to drop. The time dependent leaking current of the ER fluids under DC electric field is also measured. The conductivity increase is mainly caused by the structure evolution of particles. The experimental results can he explained with the calculations of Davis (J. Appl. Phys. 81(1997) pp.1985-1991) and Martin (J. Chem. Phys. 110(1999) pp.4854-4866). It is predicted that the NaY zeolite ER fluid strength would get degraded slowly.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Movement intention detection is important for development of intuitive movement based Brain Computer Interfaces (BCI). Various complex oscillatory processes are involved in producing voluntary movement intention. In this paper, temporal dynamics of electroencephalography (EEG) associated with movement intention and execution were studied using autocorrelation. It was observed that the trend of decay of autocorrelation of EEG changes before and during the voluntary movement. A novel feature for movement intention detection was developed based on relaxation time of autocorrelation obtained by fitting exponential decay curve to the autocorrelation. This new single trial feature was used to classify voluntary finger tapping trials from resting state trials with peak accuracy of 76.7%. The performance of autocorrelation analysis was compared with Motor-Related Cortical Potentials (MRCP).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose. Accommodation can mask hyperopia and reduce the accuracy of non-cycloplegic refraction. It is, therefore, important to minimize accommodation to obtain a measure of hyperopia as accurate as possible. To characterize the parameters required to measure the maximally hyperopic error using photorefraction, we used different target types and distances to determine which target was most likely to maximally relax accommodation and thus more accurately detect hyperopia in an individual. Methods. A PlusoptiX SO4 infra-red photorefractor was mounted in a remote haploscope which presented the targets. All participants were tested with targets at four fixation distances between 0.3 and 2 m containing all combinations of blur, disparity, and proximity/looming cues. Thirty-eight infants (6 to 44 weeks) were studied longitudinally, and 104 children [4 to 15 years (mean 6.4)] and 85 adults, with a range of refractive errors and binocular vision status, were tested once. Cycloplegic refraction data were available for a sub-set of 59 participants spread across the age range. Results. The maximally hyperopic refraction (MHR) found at any time in the session was most frequently found when fixating the most distant targets and those containing disparity and dynamic proximity/looming cues. Presence or absence of blur was less significant, and targets in which only single cues to depth were present were also less likely to produce MHR. MHR correlated closely with cycloplegic refraction (r = 0.93, mean difference 0.07 D, p = n.s., 95% confidence interval +/-<0.25 D) after correction by a calibration factor. Conclusions. Maximum relaxation of accommodation occurred for binocular targets receding into the distance. Proximal and disparity cues aid relaxation of accommodation to a greater extent than blur, and thus non-cycloplegic refraction targets should incorporate these cues. This is especially important in screening contexts with a brief opportunity to test for significant hyperopia. MHR in our laboratory was found to be a reliable estimation of cycloplegic refraction. (Optom Vis Sci 2009;86:1276-1286)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Asynchronous Optical Sampling has the potential to improve signal to noise ratio in THz transient sperctrometry. The design of an inexpensive control scheme for synchronising two femtosecond pulse frequency comb generators at an offset frequency of 20 kHz is discussed. The suitability of a range of signal processing schemes adopted from the Systems Identification and Control Theory community for further processing recorded THz transients in the time and frequency domain are outlined. Finally, possibilities for femtosecond pulse shaping using genetic algorithms are mentioned.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The motion in concentrated polymer systems is described by either the Rouse or the reptation model, which both assume that the relaxation of each polymer chain is independent of the surrounding chains. This, however, is in contradiction with several experiments. In this Letter, we propose a universal description of orientation coupling in polymer melts in terms of the time-dependent coupling parameter κ(t). We use molecular dynamics simulations to show that the coupling parameter increases with time, reaching about 50% at long times, independently of the chain length or blend composition. This leads to predictions of component dynamics in mixtures of different molecular weights from the knowledge of monodisperse dynamics for unentangled melts. Finally, we demonstrate that entanglements do not play a significant role in the observed coupling. © 2010 The American Physical Society

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The lowest allowed electronic transition of fac-[Re(Cl)(CO)(3)(bopy)(2)] (bopy = 4-benzoylpyridine) has a Re --> bopy MLCT character, as revealed by UV-vis and stationary resonance Raman spectroscopy. Accordingly, the lowest-lying, long-lived, excited state is Re --> bopy (MLCT)-M-3. Electronic depopulation of the Re(CO)(3) unit and population of a bopy pi* orbital upon excitation are evident by the upward shift of v(Cequivalent toO) vibrations and a downward shift of the ketone v(C=O) vibration, respectively, seen in picosecond time-resolved IR spectra. Moreover, reduction of a single bopy ligand in the (MLCT)-M-3 excited state is indicated by time-resolved visible and resonance Raman (TR3) spectra that show features typical of bopy(.-). In contrast, the lowest allowed electronic transition and lowest-lying excited state of a new complex fac-[Re(bopy)(CO)(3)(bpy)](+) (bpy = 2,2'-bipyridine) have been identified as Re --> bpy MLCT with no involvement of the bopy ligand, despite the fact that the first reduction of this complex is bopy-localized, as was proven spectroelectrochemically. This is a rare case in which the localizations of the lowest MLCT excitation and the first reduction are different. (MLCT)-M-3 excited states of both fac-[Re(Cl)(CO)(3)(bopy)(2)] and fac-[Re(bopy)(CO)(3)(bpy)](+) are initially formed vibrationally hot. Their relaxation is manifested by picosecond dynamic shifts of v(Cequivalent toO) IR bands. The X-ray structure of fac-[Re(bopy)(CO)(3)(bpy)](PF6CH3CN)-C-. has been determined.