28 resultados para Relativistic dissipative hydrodynamics
em CentAUR: Central Archive University of Reading - UK
Resumo:
The derivation of time evolution equations for slow collective variables starting from a micro- scopic model system is demonstrated for the tutorial example of the classical, two-dimensional XY model. Projection operator techniques are used within a nonequilibrium thermodynamics framework together with molecular simulations in order to establish the building blocks of the hydrodynamics equations: Poisson brackets that determine the deterministic drift, the driving forces from the macroscopic free energy and the friction matrix. The approach is rather general and can be applied for deriving the equations of slow variables for a broad variety of systems.
Extraction of tidal channel networks from aerial photographs alone and combined with laser altimetry
Resumo:
Tidal channel networks play an important role in the intertidal zone, exerting substantial control over the hydrodynamics and sediment transport of the region and hence over the evolution of the salt marshes and tidal flats. The study of the morphodynamics of tidal channels is currently an active area of research, and a number of theories have been proposed which require for their validation measurement of channels over extensive areas. Remotely sensed data provide a suitable means for such channel mapping. The paper describes a technique that may be adapted to extract tidal channels from either aerial photographs or LiDAR data separately, or from both types of data used together in a fusion approach. Application of the technique to channel extraction from LiDAR data has been described previously. However, aerial photographs of intertidal zones are much more commonly available than LiDAR data, and most LiDAR flights now involve acquisition of multispectral images to complement the LiDAR data. In view of this, the paper investigates the use of multispectral data for semiautomatic identification of tidal channels, firstly from only aerial photographs or linescanner data, and secondly from fused linescanner and LiDAR data sets. A multi-level, knowledge-based approach is employed. The algorithm based on aerial photography can achieve a useful channel extraction, though may fail to detect some of the smaller channels, partly because the spectral response of parts of the non-channel areas may be similar to that of the channels. The algorithm for channel extraction from fused LiDAR and spectral data gives an increased accuracy, though only slightly higher than that obtained using LiDAR data alone. The results illustrate the difficulty of developing a fully automated method, and justify the semi-automatic approach adopted.
Resumo:
Jupiter’s magnetosphere acts as a point source of near-relativistic electrons within the heliosphere. In this study, three solar cycles of Jovian electron data in near-Earth space are examined. Jovian electron intensity is found to peak for an ideal Parker spiral connection, but with considerable spread about this point. Assuming the peak in Jovian electron counts indicates the best magnetic connection to Jupiter, we find a clear trend for fast and slow solar wind to be over- and under-wound with respect to the ideal Parker spiral, respectively. This is shown to be well explained in terms of solar wind stream interactions. Thus, modulation of Jovian electrons by corotating interaction regions (CIRs) may primarily be the result of changing magnetic connection, rather than CIRs acting as barriers to cross-field diffusion. By using Jovian electrons to remote sensing magnetic connectivity with Jupiter’s magnetosphere, we suggest that they provide a means to validate solar wind models between 1 and 5 AU, even when suitable in situ solar wind observations are not available. Furthermore, using Jovian electron observations as probes of heliospheric magnetic topology could provide insight into heliospheric magnetic field braiding and turbulence, as well as any systematic under-winding of the heliospheric magnetic field relative to the Parker spiral from footpoint motion of the magnetic field.
Resumo:
1. Suspension feeding by caseless caddisfly larvae (Trichoptera) constitutes a major pathway for energy flow, and strongly influences productivity, in streams and rivers. 2. Consideration of the impact of these animals on lotic ecosystems has been strongly influenced by a single study investigating the efficiency of particle capture of nets built by one species of hydropsychid caddisfly. 3. Using water sampling techniques at appropriate spatial scales, and taking greater consideration of local hydrodynamics than previously, we examined the size-frequency distribution of particles captured by the nets of Hydropsyche siltalai. Our results confirm that capture nets are selective in terms of particle size, and in addition suggest that this selectivity is for particles likely to provide the most energy. 4. By incorporating estimates of flow diversion around the nets of caseless caddisfly larvae, we show that capture efficiency (CE) is considerably higher than previously estimated, and conclude that more consideration of local hydrodynamics is needed to evaluate the efficiency of particle capture. 5. We use our results to postulate a mechanistic explanation for a recent example of interspecific facilitation, whereby a reduction of near-bed velocities seen in single species monocultures leads to increased capture rates and local depletion of seston within the region of reduced velocity.
Resumo:
The development of eutrophication in river systems is poorly understood given the complex relationship between fixed plants, algae, hydrodynamics, water chemistry and solar radiation. However there is a pressing need to understand the relationship between the ecological status of rivers and the controlling environmental factors to help the reasoned implementation of the Water Framework Directive and Catchment Sensitive Farming in the UK. This research aims to create a dynamic, process-based, mathematical in-stream model to simulate the growth and competition of different vegetation types (macrophytes, phytoplankton and benthic algae) in rivers. The model, applied to the River Frome (Dorset, UK), captured well the seasonality of simulated vegetation types (suspended algae, macrophytes, epiphytes, sediment biofilm). Macrophyte results showed that local knowledge is important for explaining unusual changes in biomass. Fixed algae simulations indicated the need for the more detailed representation of various herbivorous grazer groups, however this would increase the model complexity, the number of model parameters and the required observation data to better define the model. The model results also highlighted that simulating only phytoplankton is insufficient in river systems, because the majority of the suspended algae have benthic origin in short retention time rivers. Therefore, there is a need for modelling tools that link the benthic and free-floating habitats.
Resumo:
The climate belongs to the class of non-equilibrium forced and dissipative systems, for which most results of quasi-equilibrium statistical mechanics, including the fluctuation-dissipation theorem, do not apply. In this paper we show for the first time how the Ruelle linear response theory, developed for studying rigorously the impact of perturbations on general observables of non-equilibrium statistical mechanical systems, can be applied with great success to analyze the climatic response to general forcings. The crucial value of the Ruelle theory lies in the fact that it allows to compute the response of the system in terms of expectation values of explicit and computable functions of the phase space averaged over the invariant measure of the unperturbed state. We choose as test bed a classical version of the Lorenz 96 model, which, in spite of its simplicity, has a well-recognized prototypical value as it is a spatially extended one-dimensional model and presents the basic ingredients, such as dissipation, advection and the presence of an external forcing, of the actual atmosphere. We recapitulate the main aspects of the general response theory and propose some new general results. We then analyze the frequency dependence of the response of both local and global observables to perturbations having localized as well as global spatial patterns. We derive analytically several properties of the corresponding susceptibilities, such as asymptotic behavior, validity of Kramers-Kronig relations, and sum rules, whose main ingredient is the causality principle. We show that all the coefficients of the leading asymptotic expansions as well as the integral constraints can be written as linear function of parameters that describe the unperturbed properties of the system, such as its average energy. Some newly obtained empirical closure equations for such parameters allow to define such properties as an explicit function of the unperturbed forcing parameter alone for a general class of chaotic Lorenz 96 models. We then verify the theoretical predictions from the outputs of the simulations up to a high degree of precision. The theory is used to explain differences in the response of local and global observables, to define the intensive properties of the system, which do not depend on the spatial resolution of the Lorenz 96 model, and to generalize the concept of climate sensitivity to all time scales. We also show how to reconstruct the linear Green function, which maps perturbations of general time patterns into changes in the expectation value of the considered observable for finite as well as infinite time. Finally, we propose a simple yet general methodology to study general Climate Change problems on virtually any time scale by resorting to only well selected simulations, and by taking full advantage of ensemble methods. The specific case of globally averaged surface temperature response to a general pattern of change of the CO2 concentration is discussed. We believe that the proposed approach may constitute a mathematically rigorous and practically very effective way to approach the problem of climate sensitivity, climate prediction, and climate change from a radically new perspective.
Resumo:
This paper will present a conceptual framework for the examination of land redevelopment based on a complex systems/networks approach. As Alvin Toffler insightfully noted, modern scientific enquiry has become exceptionally good at splitting problems into pieces but has forgotten how to put the pieces back together. Twenty-five years after his remarks, governments and corporations faced with the requirements of sustainability are struggling to promote an ‘integrated’ or ‘holistic’ approach to tackling problems. Despite the talk, both practice and research provide few platforms that allow for ‘joined up’ thinking and action. With socio-economic phenomena, such as land redevelopment, promising prospects open up when we assume that their constituents can make up complex systems whose emergent properties are more than the sum of the parts and whose behaviour is inherently difficult to predict. A review of previous research shows that it has mainly focused on idealised, ‘mechanical’ views of property development processes that fail to recognise in full the relationships between actors, the structures created and their emergent qualities. When reality failed to live up to the expectations of these theoretical constructs then somebody had to be blamed for it: planners, developers, politicians. However, from a ‘synthetic’ point of view the agents and networks involved in property development can be seen as constituents of structures that perform complex processes. These structures interact, forming new more complex structures and networks. Redevelopment then can be conceptualised as a process of transformation: a complex system, a ‘dissipative’ structure involving developers, planners, landowners, state agencies etc., unlocks the potential of previously used sites, transforms space towards a higher order of complexity and ‘consumes’ but also ‘creates’ different forms of capital in the process. Analysis of network relations point toward the ‘dualism’ of structure and agency in these processes of system transformation and change. Insights from actor network theory can be conjoined with notions of complexity and chaos to build an understanding of the ways in which actors actively seek to shape these structures and systems, whilst at the same time are recursively shaped by them in their strategies and actions. This approach transcends the blame game and allows for inter-disciplinary inputs to be placed within a broader explanatory framework that does away with many past dichotomies. Better understanding of the interactions between actors and the emergent qualities of the networks they form can improve our comprehension of the complex socio-spatial phenomena that redevelopment comprises. The insights that this framework provides when applied in UK institutional investment into redevelopment are considered to be significant.
Resumo:
Research to date has tended to concentrate on bandwidth considerations to increase scalability in distributed interactive simulation and virtual reality systems. This paper proposes that the major concern for latency in user interaction is that of the fundamental limit of communication rate due to the speed of light. Causal volumes and surfaces are introduced as a model of the limitations of causality caused by this fundamental delay. The concept of virtual world critical speed is introduced, which can be determined from the causal surface. The implications of the critical speed are discussed, and relativistic dynamics are used to constrain the object speed, in the same way speeds are bounded in the real world.
Resumo:
The very first numerical models which were developed more than 20 years ago were drastic simplifications of the real atmosphere and they were mostly restricted to describe adiabatic processes. For prediction of a day or two of the mid tropospheric flow these models often gave reasonable results but the result deteriorated quickly when the prediction was extended further in time. The prediction of the surface flow was unsatisfactory even for short predictions. It was evident that both the energy generating processes as well as the dissipative processes have to be included in numerical models in order to predict the weather patterns in the lower part of the atmosphere and to predict the atmosphere in general beyond a day or two. Present-day computers make it possible to attack the weather forecasting problem in a more comprehensive and complete way and substantial efforts have been made during the last decade in particular to incorporate the non-adiabatic processes in numerical prediction models. The physics of radiational transfer, condensation of moisture, turbulent transfer of heat, momentum and moisture and the dissipation of kinetic energy are the most important processes associated with the formation of energy sources and sinks in the atmosphere and these have to be incorporated in numerical prediction models extended over more than a few days. The mechanisms of these processes are mainly related to small scale disturbances in space and time or even molecular processes. It is therefore one of the basic characteristics of numerical models that these small scale disturbances cannot be included in an explicit way. The reason for this is the discretization of the model's atmosphere by a finite difference grid or the use of a Galerkin or spectral function representation. The second reason why we cannot explicitly introduce these processes into a numerical model is due to the fact that some physical processes necessary to describe them (such as the local buoyance) are a priori eliminated by the constraints of hydrostatic adjustment. Even if this physical constraint can be relaxed by making the models non-hydrostatic the scale problem is virtually impossible to solve and for the foreseeable future we have to try to incorporate the ensemble or gross effect of these physical processes on the large scale synoptic flow. The formulation of the ensemble effect in terms of grid-scale variables (the parameters of the large-scale flow) is called 'parameterization'. For short range prediction of the synoptic flow at middle and high latitudes, very simple parameterization has proven to be rather successful.
Resumo:
We present the complete next-to-leading order QCD corrections to the polarized hadroproduction of heavy flavors which soon will be studied experimentally in polarized pp collisions at the BNL Relativistic Heavy Ion Collider (RHIC) in order to constrain the polarized gluon density Δg. It is demonstrated that the dependence on unphysical renormalization and factorization scales is strongly reduced beyond the leading order. The sensitivity of the charm quark spin asymmetry to Δg is analyzed in some detail, including the limited detector acceptance for leptons from charm quark decays at the BNL RHIC.