2 resultados para Reinforcement effects

em CentAUR: Central Archive University of Reading - UK


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Extinction following positively reinforced operant conditioning reduces response frequency, at least in part through the aversive or frustrative effects of non-reinforcement. According to J.A. Gray's theory, non-reinforcement activates the behavioural inhibition system which in turn causes anxiety. As predicted, anxiolytic drugs including benzodiazepines affect the operant extinction process. Recent studies have shown that reducing GABA-mediated neurotransmission retards extinction of aversive conditioning. We have shown in a series of studies that anxiolytic compounds that potentiate GABA facilitate extinction of positively reinforced fixed-ratio operant behaviour in C57B1/6 male mice. This effect does not occur in the early stages of extinction, nor is it dependent on cumulative effects of the compound administered. Potentiation of GABA at later stages has the effect of increasing sensitivity to the extinction contingency and facilitates the inhibition of the behaviour that is no longer required. The GABAergic hypnotic, zolpidem, has the same selective effects on operant extinction in this procedure. The effects of zolpidem are not due to sedative action. There is evidence across our series of experiments that different GABA-A subtype receptors are involved in extinction facilitation and anxiolysis. Consequently, this procedure may not be an appropriate model for anxiolytic drug action, but it may be a useful technique for analysing the neural bases of extinction and designing therapeutic interventions in humans where failure to extinguish inappropriate behaviours can lead to pathological conditions such as post-traumatic stress disorder.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Relatively little is known about the role of the inhibitory neurotransmitter gamma-aminobutyric acid (GABA) in extinction of appetitively motivated tasks. The benzodiazepine (BZ) chlordiazepoxide (CDP) was administered during extinction and re-acquisition of lever pressing by mice following food reinforced discrete-trial fixed-ratio 5 (FR-5) training. Typical FR behaviour was established during baseline training and persisted for several extinction sessions. There were 15 extinction sessions in all, followed by six re-acquisition sessions where food reinforcement was re-introduced. In a 2x2x2 between-group design, CDP (15 mg/kg) or vehicle injections were given prior to either the last two food reinforcement sessions and the first 10 extinction sessions, or the final five extinction sessions, or the six re-acquisition sessions. Initially CDP had no effect on the rate of extinction, but after several extinction sessions it significantly facilitated it. Surprisingly, if CDP was administered only after several sessions of extinction, it immediately produced facilitation. Thus the delayed effects of CDP are not due to drug accumulation. These data suggest that some neural change must occur before CDP can affect extinction processes. In re-acquisition sessions, CDP facilitated the reinstatement of food-reinforced lever pressing. Implications for neural and behavioural accounts of operant extinction are discussed.