26 resultados para Regulatory Sequences, Nucleic Acid

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The nuclear magnetic resonance (NMR) structure of a globular domain of residues 1071 to 1178 within the previously annotated nucleic acid-binding region (NAB) of severe acute respiratory syndrome coronavirus nonstructural protein 3 (nsp3) has been determined, and N- and C-terminally adjoining polypeptide segments of 37 and 25 residues, respectively, have been shown to form flexibly extended linkers to the preceding globular domain and to the following, as yet uncharacterized domain. This extension of the structural coverage of nsp3 was obtained from NMR studies with an nsp3 construct comprising residues 1066 to 1181 [ nsp3(1066-1181)] and the constructs nsp3(1066-1203) and nsp3(1035-1181). A search of the protein structure database indicates that the globular domain of the NAB represents a new fold, with a parallel four-strand beta-sheet holding two alpha-helices of three and four turns that are oriented antiparallel to the beta-strands. Two antiparallel two-strand beta-sheets and two 3(10)-helices are anchored against the surface of this barrel-like molecular core. Chemical shift changes upon the addition of single-stranded RNAs (ssRNAs) identified a group of residues that form a positively charged patch on the protein surface as the binding site responsible for the previously reported affinity for nucleic acids. This binding site is similar to the ssRNA-binding site of the sterile alpha motif domain of the Saccharomyces cerevisiae Vts1p protein, although the two proteins do not share a common globular fold.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Effective extraction of nucleic acid from environmental samples is an essential starting point in the molecular analysis of microbial communities in the environment. However, there are many different extraction methods in the literature and deciding which one is best suited to a particular sample is very difficult. This article details the important steps and choices in deciding how to extract nucleic acids from environmental samples and gives specific details of one method that has proven very successful at extracting DNA and RNA from a range of different samples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The syntheses of the complexes formulated as SnMe2Cl2(Ad)2 (I), SnMe2Cl2(Ado)2 (II), SnMe2Cl2- (9-MeAd)2 (III) [Ad = adenine, Ado = adenosine, 9-MeAd = 9-methyladenine] as well as the more unexpected SnPhCl2(OH)(Ad)2·3H2O (IV) and SnPhCl3(Ado)2 (V) by reaction of SnMe2Cl2 or SnPh2Cl2 with the appropriate bases in methanol is described. 1H NMR studies suggest that coordination is through the N-7 position of the adenine base.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

3 '-S-Phosphorothiolate linkages incorporated into an oligodeoxynucleotide have been shown to stabilise duplex formation with a complementary RNA strand, but destabilise a duplex formed with a complementary DNA strand. The four-stranded i-motif structure is also stabilised this modification.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

IntFOLD is an independent web server that integrates our leading methods for structure and function prediction. The server provides a simple unified interface that aims to make complex protein modelling data more accessible to life scientists. The server web interface is designed to be intuitive and integrates a complex set of quantitative data, so that 3D modelling results can be viewed on a single page and interpreted by non-expert modellers at a glance. The only required input to the server is an amino acid sequence for the target protein. Here we describe major performance and user interface updates to the server, which comprises an integrated pipeline of methods for: tertiary structure prediction, global and local 3D model quality assessment, disorder prediction, structural domain prediction, function prediction and modelling of protein-ligand interactions. The server has been independently validated during numerous CASP (Critical Assessment of Techniques for Protein Structure Prediction) experiments, as well as being continuously evaluated by the CAMEO (Continuous Automated Model Evaluation) project. The IntFOLD server is available at: http://www.reading.ac.uk/bioinf/IntFOLD/

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The incidence and severity of light leaf spot epidemics caused by the ascomycete fungus Pyrenopeziza brassicae on UK oilseed rape crops is increasing. The disease is currently controlled by a combination of host resistance, cultural practices and fungicide applications. We report decreases in sensitivities of modern UK P. brassicae isolates to the azole (imidazole and triazole) class of fungicides. By cloning and sequencing the P. brassicae CYP51 (PbCYP51) gene, encoding the azole target sterol 14α-demethylase, we identified two non-synonymous mutations encoding substitutions G460S and S508T associated with reduced azole sensitivity. We confirmed the impact of the encoded PbCYP51 changes on azole sensitivity and protein activity by heterologous expression in a Saccharomyces cerevisiae mutant YUG37::erg11 carrying a controllable promoter of native CYP51 expression. In addition, we identified insertions in the predicted regulatory regions of PbCYP51 in isolates with reduced azole sensitivity. The presence of these insertions was associated with enhanced transcription of PbCYP51 in response to sub-inhibitory concentrations of the azole fungicide tebuconazole. Genetic analysis of in vitro crosses of sensitive and resistant isolates confirmed the impact of PbCYP51 alterations in coding and regulatory sequences on a reduced sensitivity phenotype, as well as identifying a second major gene at another locus contributing to resistance in some isolates. The least sensitive field isolates carry combinations of upstream insertions and non-synonymous mutations, suggesting PbCYP51 evolution is on-going and the progressive decline in azole sensitivity of UK P. brassicae populations will continue. The implications for the future control of light leaf spot are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

dTwo genetic constructs used to confer improved agronomic characteristics, namely herbicide tolerance (HT) in maize and soyabean and insect resistance (Bt) in maize, are considered in respect of feeding to farm livestock, animal performance and the nutritional value and safety of animal products. A review of nucleic acid (DNA) and protein digestion in farm livestock concludes that the frequency of intact transgenic DNA and proteins of GM and non-GM crops being absorbed is minimal/non existent, although there is some evidence of the presence of short fragments of rubisco DNA of non-GM soya in animal tissues. It has been established that feed processing (especially heat) prior to feeding causes significant disruption of plant DNA. Studies with ruminant and non-ruminant farm livestock offered GM feeds demonstrated that animal performance and product composition are unaffected and that there is no evidence of transgenic DNA or proteins of current GM in the products of animals consuming such feeds. On this evidence, current HT and Bt constructs represent no threat to the health of animals, or humans consuming the products of such animals. However as new GM constructs become available it will be necessary to subject these to rigorous evaluation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An extensive study was conducted to determine where in the production chain Rhizoctonia solani became associated with UK module-raised Brassica oleracea plants. In total, 2600 plants from 52 crops were sampled directly from propagators and repeat sampled from the field. Additional soil, compost and water samples were collected from propagation nurseries and screened using conventional agar isolation methods. No isolates of R. solani were recovered from any samples collected from propagation nurseries. Furthermore, nucleic acid preparations from samples of soil and compost from propagation nurseries gave negative results when tested for R. solani using real-time PCR. Conversely, R. solani was recovered from 116 of 1300 stem bases collected from field crops. All the data collected suggested R. solani became associated with B. oleracea in the field rather than during propagation. Parsimony and Bayesian phylogenetic studies of ribosomal DNA suggested the majority of further classified isolates belonged to anastomosis groups 2-1 (48/57) and AG-4HGII (8/57), groups known to be pathogenic on Brassica spp. in other countries. Many R. solani isolates were recovered from symptomless plant material and the possibilities for such an association are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Severe acute respiratory syndrome (SARS) coronavirus infection and growth are dependent on initiating signaling and enzyme actions upon viral entry into the host cell. Proteins packaged during virus assembly may subsequently form the first line of attack and host manipulation upon infection. A complete characterization of virion components is therefore important to understanding the dynamics of early stages of infection. Mass spectrometry and kinase profiling techniques identified nearly 200 incorporated host and viral proteins. We used published interaction data to identify hubs of connectivity with potential significance for virion formation. Surprisingly, the hub with the most potential connections was not the viral M protein but the nonstructurall protein 3 (nsp3), which is one of the novel virion components identified by mass spectrometry. Based on new experimental data and a bioinformatics analysis across the Coronaviridae, we propose a higher-resolution functional domain architecture for nsp3 that determines the interaction capacity of this protein. Using recombinant protein domains expressed in Escherichia coli, we identified two additional RNA-binding domains of nsp3. One of these domains is located within the previously described SARS-unique domain, and there is a nucleic acid chaperone-like domain located immediately downstream of the papain-like proteinase domain. We also identified a novel cysteine-coordinated metal ion-binding domain. Analyses of interdomain interactions and provisional functional annotation of the remaining, so-far-uncharacterized domains are presented. Overall, the ensemble of data surveyed here paint a more complete picture of nsp3 as a conserved component of the viral protein processing machinery, which is intimately associated with viral RNA in its role as a virion component.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The synthesis of modified nucleic acids has been the subject of much study ever since the structure of DNA was elucidated by Watson and Crick at Cambridge and Wilkins and Franklin at King's College over half a century ago. This review describes recent developments in the synthesis and application of these artificial nucleic acids, predominantly the phosphoramidites which allow for easy inclusion into oligonucleotides, and is divided into three separate sections. Firstly, modi. cations to the base portion will be discussed followed secondly by modi. cations to the sugar portion. Finally, changes in the type of nucleic acid linker will be discussed in the third section. Peptide Nucleic Acids ( PNAs) are not discussed in this review as they represent a separate and large area of nucleic acid mimics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: To test the hypothesis that measles vaccination was involved in the pathogenesis of autism spectrum disorders (ASD) as evidenced by signs of a persistent measles infection or abnormally persistent immune response shown by circulating measles virus or raised antibody titres in children with ASD who had been vaccinated against measles, mumps and rubella (MMR) compared with controls. Design: Case-control study, community based. Methods: A community sample of vaccinated children aged 10-12 years in the UK with ASD (n = 98) and two control groups of similar age, one with special educational needs but no ASD (n = 52) and one typically developing group (n = 90), were tested for measles virus and antibody response to measles in the serum. Results: No difference was found between cases and controls for measles antibody response. There was no dose-response relationship between autism symptoms and antibody concentrations. Measles virus nucleic acid was amplified by reverse transcriptase-PCR in peripheral blood mononuclear cells from one patient with autism and two typically developing children. There was no evidence of a differential response to measles virus or the measles component of the MMR in children with ASD, with or without regression, and controls who had either one or two doses of MMR. Only one child from the control group had clinical symptoms of possible enterocolitis. Conclusion: No association between measles vaccination and ASD was shown.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An automatic method for recognizing natively disordered regions from amino acid sequence is described and benchmarked against predictors that were assessed at the latest critical assessment of techniques for protein structure prediction (CASP) experiment. The method attains a Wilcoxon score of 90.0, which represents a statistically significant improvement on the methods evaluated on the same targets at CASP. The classifier, DISOPRED2, was used to estimate the frequency of native disorder in several representative genomes from the three kingdoms of life. Putative, long (>30 residue) disordered segments are found to occur in 2.0% of archaean, 4.2% of eubacterial and 33.0% of eukaryotic proteins. The function of proteins with long predicted regions of disorder was investigated using the gene ontology annotations supplied with the Saccharomyces genome database. The analysis of the yeast proteome suggests that proteins containing disorder are often located in the cell nucleus and are involved in the regulation of transcription and cell signalling. The results also indicate that native disorder is associated with the molecular functions of kinase activity and nucleic acid binding.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Small interfering RNA (siRNA), antisense oligonucleotides (ODNs), ribozymes and DNAzymes have emerged as sequence-specific inhibitors of gene expression that may have therapeutic potential in the treatment of a wide range of diseases. Due to their rapid degradation in vivo, the efficacy of naked gene silencing nucleic acids is relatively short lived. The entrapment of these nucleic acids within biodegradable sustained-release delivery systems may improve their stability and reduce the doses required for efficacy. In this study, we have evaluated the potential in vitro and in vivo use of biodegradable poly (d,l-lactide-co-glycolide) copolymer (PLGA) microspheres as sustained delivery devices for ODNs, ribozyme, siRNA and DNA enzymes. In addition, we investigated the release of ODN conjugates bearing 5′-end lipophilic groups. The in vitro sustained release profiles of microsphere-entrapped nucleic acids were dependent on variables such as the type of nucleic acid used, the nature of the lipophilic group, and whether the nucleic acid used was single or double stranded. For in vivo studies, whole body autoradiography was used to monitor the bio-distribution of either free tritium-labelled ODN or that entrapped within PLGA microspheres following subcutaneous administration in Balb-c mice. The majority of the radioactivity associated with free ODN was eliminated within 24 h whereas polymer-released ODN persisted in organs and at the site of administration even after seven days post-administration. Polymer microsphere released ODN exhibited a similar tissue and cellular tropism to the free ODN. Micro-autoradiography analyses of the liver and kidneys showed similar bio-distribution for polymer-released and free ODNs with the majority of radioactivity being concentrated in the proximal convoluted tubules of the kidney and in the Kupffer cells of the liver. These findings suggest that biodegradable PLGA microspheres offer a method for improving the in vivo sustained delivery of gene silencing nucleic acids, and hence are worthy of further investigation as delivery systems for these macromolecules.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A method and oligonucleotide compound for inhibiting replication of a nidovirus in virus-infected animal cells are disclosed. The compound (i) has a nuclease-resistant backbone, (ii) is capable of uptake by the infected cells, (iii) contains between 8-25 nucleotide bases, and (iv) has a sequence capable of disrupting base pairing between the transcriptional regulatory sequences in the 5′ leader region of the positive-strand viral genome and negative-strand 3′ subgenomic region. In practicing the method, infected cells are exposed to the compound in an amount effective to inhibit viral replication.