41 resultados para Regimes of Exception
em CentAUR: Central Archive University of Reading - UK
Resumo:
Actual energy paths of long, extratropical baroclinic Rossby waves in the ocean are difficult to describe simply because they depend on the meridional-wavenumber-to-zonal-wavenumber ratio tau, a quantity that is difficult to estimate both observationally and theoretically. This paper shows, however, that this dependence is actually weak over any interval in which the zonal phase speed varies approximately linearly with tau, in which case the propagation becomes quasi-nondispersive (QND) and describable at leading order in terms of environmental conditions (i.e., topography and stratification) alone. As an example, the purely topographic case is shown to possess three main kinds of QND ray paths. The first is a topographic regime in which the rays follow approximately the contours f/h(alpha c) = a constant (alpha(c) is a near constant fixed by the strength of the stratification, f is the Coriolis parameter, and h is the ocean depth). The second and third are, respectively, "fast" and "slow" westward regimes little affected by topography and associated with the first and second bottom-pressure-compensated normal modes studied in previous work by Tailleux and McWilliams. Idealized examples show that actual rays can often be reproduced with reasonable accuracy by replacing the actual dispersion relation by its QND approximation. The topographic regime provides an upper bound ( in general a large overestimate) of the maximum latitudinal excursions of actual rays. The method presented in this paper is interesting for enabling an optimal classification of purely azimuthally dispersive wave systems into simpler idealized QND wave regimes, which helps to rationalize previous empirical findings that the ray paths of long Rossby waves in the presence of mean flow and topography often seem to be independent of the wavenumber orientation. Two important side results are to establish that the baroclinic string function regime of Tyler and K se is only valid over a tiny range of the topographic parameter and that long baroclinic Rossby waves propagating over topography do not obey any two-dimensional potential vorticity conservation principle. Given the importance of the latter principle in geophysical fluid dynamics, the lack of it in this case makes the concept of the QND regimes all the more important, for they are probably the only alternative to provide a simple and economical description of general purely azimuthally dispersive wave systems.
Resumo:
We have compiled 223 sedimentary charcoal records from Australasia in order to examine the temporal and spatial variability of fire regimes during the Late Quaternary. While some of these records cover more than a full glacial cycle, here we focus on the last 70,000 years when the number of individual records in the compilation allows more robust conclusions. On orbital time scales, fire in Australasia predominantly reflects climate, with colder periods characterized by less and warmer intervals by more biomass burning. The composite record for the region also shows considerable millennial-scale variability during the last glacial interval (73.5–14.7 ka). Within the limits of the dating uncertainties of individual records, the variability shown by the composite charcoal record is more similar to the form, number and timing of Dansgaard–Oeschger cycles as observed in Greenland ice cores than to the variability expressed in the Antarctic ice-core record. The composite charcoal record suggests increased biomass burning in the Australasian region during Greenland Interstadials and reduced burning during Greenland Stadials. Millennial-scale variability is characteristic of the composite record of the sub-tropical high pressure belt during the past 21 ka, but the tropics show a somewhat simpler pattern of variability with major peaks in biomass burning around 15 ka and 8 ka. There is no distinct change in fire regime corresponding to the arrival of humans in Australia at 50 ± 10 ka and no correlation between archaeological evidence of increased human activity during the past 40 ka and the history of biomass burning. However, changes in biomass burning in the last 200 years may have been exacerbated or influenced by humans.
Resumo:
A rheological model of sea ice is presented that incorporates the orientational distribution of ice thickness in leads embedded in isotropic floe ice. Sea ice internal stress is determined by coulombic, ridging and tensile failure at orientations where corresponding failure criteria are satisfied at minimum stresses. Because sea ice traction increases in thinner leads and cohesion is finite, such failure line angles are determined by the orientational distribution of sea ice thickness relative to the imposed stresses. In contrast to the isotropic case, sea ice thickness anisotropy results in these failure lines becoming dependent on the stress magnitude. Although generally a given failure criteria type can be satisfied at many directions, only two at most are considered. The strain rate is determined by shearing along slip lines accompanied by dilatancy and closing or opening across orientations affected by ridging or tensile failure. The rheology is illustrated by a yield curve determined by combining coulombic and ridging failure for the case of two pairs of isotropically formed leads of different thicknesses rotated with regard to each other, which models two events of coulombic failure followed by dilatancy and refreezing. The yield curve consists of linear segments describing coulombic and ridging yield as failure switches from one lead to another as the stress grows. Because sliding along slip lines is accompanied by dilatancy, at typical Arctic sea ice deformation rates a one-day-long deformation event produces enough open water that these freshly formed slip lines are preferential places of ridging failure.
Resumo:
The conformational properties of symmetric flexible diblock polyampholytes are investigated by scaling theory and molecular dynamics simulations. The electrostatically driven coil-globule transition of a symmetric diblock polyampholyte is found to consist of three regimes identified with increasing electrostatic interaction strength. In the first (folding) regime the electrostatic attraction causes the chain to fold through the overlap of the two blocks, while each block is slightly stretched by self-repulsion. The second (weak association or scrambled egg) regime is the classical collapse of the chain into a globule dominated by the fluctuation-induced attractions between oppositely charged sections of the chain. The structure of the formed globule can be represented as a dense packing of the charged chain sections (electrostatic attraction blobs). The third (strong association or ion binding) regime starts with direct binding of oppositely charged monomers (dipole formation), followed by a cascade of multipole formation (quadrupole, hexapole, octupole, etc.), leading to multiplets analogous to those found in ionomers. The existence of the multiplet cascade has also been confirmed in the simulations of solutions of short polymers with only one single charge (either positive or negative) in the middle of each chain. We use scaling theory to estimate the average chain size and the electrostatic correlation length as functions of the chain length, strength of electrostatic interactions, charge fraction, and solvent quality. The theoretically predicted scaling laws of these conformational properties are in very good agreement with our simulation results.
Resumo:
We describe the use of bivariate 3d empirical orthogonal functions (EOFs) in characterising low frequency variability of the Atlantic thermohaline circulation (THC) in the Hadley Centre global climate model, HadCM3. We find that the leading two modes are well correlated with an index of the meridional overturning circulation (MOC) on decadal timescales, with the leading mode alone accounting for 54% of the decadal variance. Episodes of coherent oscillations in the sub-space of the leading EOFs are identified; these episodes are of great interest for the predictability of the THC, and could indicate the existence of different regimes of natural variability. The mechanism identified for the multi-decadal variability is an internal ocean mode, dominated by changes in convection in the Nordic Seas, which lead the changes in the MOC by a few years. Variations in salinity transports from the Arctic and from the North Atlantic are the main feedbacks which control the oscillation. This mode has a weak feedback onto the atmosphere and hence a surface climatic influence. Interestingly, some of these climate impacts lead the changes in the overturning. There are also similarities to observed multi-decadal climate variability.
Resumo:
Research into transmissible spongiform encephalopathy (TSE) diseases has become a high priority worldwide in recent years yet remarkably little is known about the behaviour of TSE infectivity in the environment. The resilience and stability of prion proteins could lead to soils becoming a potential reservoir of TSE infectivity as a result of contamination from activities such as infected carcass burial or the dispersion of effluents from slaughter houses, or by contamination of pastures by infected animals, (e.g. scrapie in sheep). Knowledge of the fate of prion proteins in soils, and associated physico-chemical conditions which favour migration, can be used to help prevent re-infection of animals through grazing, to protect watercourses and develop good management practices. In two consecutive experiments of 9 and 6 months, the migration of recombinant ovine PrP (recPrP) in soil columns was followed under contrasting levels of microbial activity (normal versus reduced), under varying regimes of soil water content and redox potential, and in two different soil types (loamy sand and clay loam). At each analysis time (1, 3, 6 or 9 months), in both soil types, full-length recPrP was detected in the original contaminated layer, indicating the resilience and stability of recPrP under varied soil conditions, even in the presence of active soil microbial populations. Evidence of protein migration was found in every soil column at the earliest analysis time (1 or 3 months), but was restricted to a maximum distance of 1 cm, indicative of limited initial mobility in soils followed by strong adsorption over the following days to weeks. The survival of recPrP in the soil over a period of at least 9 months was demonstrated. In this study, recPrP was used as an indicator for potential TSE infectivity, although infectivity tests should be carried out before conclusions can be drawn regarding the infection risk posed by prions in soil. However, it has been demonstrated that soil is likely to act as a significant barrier to the dispersion of contaminated material at storage or burial sites. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
This paper describes the results of field research to dissect how social interactions differ between two reserves in Paraguay having very different styles of governance. The two reserves were Mbaracayu Natural Forest Reserve (Reserva Natural del Bosque de Mbaracayti, RNBM) and San Rafael Managed Resource Reserve (Reserva de Recursos Manejados San Rafael, RRMSR). RNBM is a private reserve owned by a non-governmental organisation. while RRNISR is a publicly-managed reserve, albeit with a substantial degree of private land ownership. Both reserves are intended to protect Atlantic Forest, one of the five world biodiversity 'hotspots', and also one of the most highly threatened. Each reserve and its buffer zone comprises a set of stakeholders, including indigenous communities and farmers, and the paper explores the interactions between these and the management regime. Indeed, while the management regimes of the two reserves are different, one being highly top-down (RNBM) and the other more socially inclusive (RRMSR), the issues that they have to deal with are much the same. However, while both management regimes will readily acknowledge the need to address poverty, inequality appears to be a far more sensitive issue. Whereas this may be expected for the privately-owned RNBM it is perhaps more surprising in RRNISR even when allowing for the fact that much of the land in the latter is in private hands. It is argued that the origins of this sensitivity rest within the broader features of Paraguayan society, and the prevalence of private land ownership. Yet ironically, it is the inequality in land ownership that is perhaps the most significant threat to conservation in both reserves. Therefore, while reserve-level analyses can provide some insight into the driving forces at play in the interaction between conservation and sustainable management, larger scales may be necessary to gain a fuller appreciation of the dynamics operating at site level. Even in a society with a history of centralised control these dynamics may be surprising. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Flood-plain meadows (Alopecurus-Sanguisorba grassland) are a floristically rich community of conservation importance throughout Europe. Declines in their distribution due in part to modern farming practices mean they now cover less than 1500 ha in the UK. To investigate the effect of grazing regime during the re-creation of this grassland type, target plant species were sown onto ex-arable land during 1985. Traditional management, based on a July hay cut followed by aftermath grazing was subsequently instigated, and the site was divided into replicated grazing regimes of cattle, sheep and an un-grazed control. Plant and beetle assemblages were sampled and compared to those of target flood-plain meadows and improved grassland communities. Within the re-creation treatments the absence of aftermath grazing reduced beetle abundances and species richness. Assemblages of plants were closest to that of the target flood-plain meadow under sheep grazing, although this differed little from cattle grazing. Beetle species assemblages and functional group structure were, however, closest to the target grassland under cattle grazing. For all taxa the greatest resilience to succession to the target flood-plain meadow occurred when grazing was not part of the management prescription. Although successful re-creation had not been achieved for either the plants or beetles, cutting followed by aftermath cattle grazing has provided the best management to date. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The effects of temperature and light integral on fruit growth and development of five cacao genotypes (Amelonado, AMAZ 15/15, SCA 6, SPEC 54/1 and UF 676) were studied in semi-controlled environment glasshouses in which the thermal regimes of cacao-growing regions of Brazil, Ghana and Malaysia were simulated. Fruit losses because of physiological will (cherelle will) were greater at higher temperatures and also differed significantly between genotypes, reflecting genetic differences in competition for assimilates between vegetative and reproductive components. Short-term measurements of fruit growth indicated faster growth rates at higher temperatures. In addition, a significant negative linear relationship between temperature and development time was observed. There was an effect of genotype on this relationship, such that time to fruit maturation at a given temperature was greatest for the clone UF 676 and least for AMAZ 15/15. Analysis of base temperatures, derived from these relationships indicated genetic variability in sensitivity of cacao fruit growth to temperature (base temperatures ranged from 7.5 degrees C for Amelonado and AMAZ 15/15 to 12.9 for SPEC 54/1). Final fruit size was a positive function of beam number for all genotypes and a positive function of light integral for Amelonado in the Malaysia simulated environment (where the temperature was almost constant). In simulated environments where temperature was the main variable (Brazil and Ghana) increases in temperature resulted in a significant decrease in final pod size for one genotype (Amelonado) in Brazil and for two genotypes (SPEC 54/1 and UF 676) in Ghana. It was hypothesised that pod growth duration (mediated by temperature), assimilation and beam number are all determinants of final pod size but that under specific conditions one of these factors may override the others. There was variability between genotypes in the response of beam size and beam lipid content to temperature. Negative relationships between temperature and bean size were found for Amelonado and UF 676. Lipid concentration was a curvilinear function of temperature for Amelonado and UF 676, with optimal temperatures of 23 degrees C and 24 degrees C, respectively. The variability observed here of different cacao genotypes to temperature highlights the need and opportunities for appropriate matching of planting material with local environments.
Resumo:
The possibility of a rapid collapse in the strength of the Atlantic meridional overturning circulation (AMOC), with associated impacts on climate, has long been recognized. The suggested basis for this risk is the existence of two stable regimes of the AMOC (‘on’ and ‘off’), and such bistable behaviour has been identified in a range of simplified climate models. However, up to now, no state-of-the-art atmosphere-ocean coupled global climate model (AOGCM) has exhibited such behaviour, leading to the interpretation that the AMOC is more stable than simpler models indicate. Here we demonstrate AMOC bistability in the response to freshwater perturbations in the FAMOUS AOGCM - the most complex AOGCM to exhibit such behaviour to date. The results also support recent suggestions that the direction of the net freshwater transport at the southern boundary of the Atlantic by the AMOC may be a useful physical indicator of the existence of bistability. We also present new estimates for this net freshwater transport by the AMOC from a range of ocean reanalyses which suggest that the Atlantic AMOC is currently in a bistable regime, although with large uncertainties. More accurate observational constraints, and an improved physical understanding of this quantity, could help narrow uncertainty in the future evolution of the AMOC and to assess the risk of a rapid AMOC collapse.
Resumo:
This paper addressed the degree of autonomy experienced by the planning regimes of London, Paris and Berlin. What variation exists in the governance of these cities and how do national, local, political, business and community interests effect planning decisions? The discussion is placed in the context of the literature on world cities and growth coalitions and the debate over whether economic forces compel cities to follow similar strategies. The paper concludes that in the case of the three cities examined there is considerable variation of planning approach due to different historical, cultural and political factors.
Resumo:
This piece is a contribution to the exhibition catalogue of Barbadian / Canadian artist Joscelyn Gardner's exhibition, 'Bleeding & Breeding' curated by Olexander Wlasenko, January 14-February 12, 2012 in the Station Gallery, Whitby, Ontario, Canada. The piece examines the ways in which Gardner's Creole Portraits II (2007) and Creole Portraits III (2009) issue a provocative and carefully crafted contestation to the journals of the slave-owner and amateur botanist Thomas Thistlewood. It argues that while Thistlewood’s journals make raced and gendered bodies seemingly available to knowledge, incorporating them within the colonial archive as signs of subjection, Gardener’s portraits disrupt these acts of history and knowledge. Her artistic response marks a radical departure from the significant body of scholarship that has drawn on the Thistlewood journals to date. Creatively contesting his narratives’ dispossession of Creole female subjects and yet aware of the problems of innocent recovery, her works style representations that retain the consciousness and effect of historical erasure. Through an oxymoronic aesthetic that assembles a highly crafted verisimilitude alongside the condition of invisibility and brings atrocity into the orbit of the aesthetic, these portraits force us to question what stakes are involved in bringing the lives of the enslaved and violated back into regimes of representation.
Resumo:
There has been recent interest in sensory systems that are able to display a response which is proportional to a fold change in stimulus concentration, a feature referred to as fold-change detection (FCD). Here, we demonstrate FCD in a recent whole-pathway mathematical model of Escherichia coli chemotaxis. FCD is shown to hold for each protein in the signalling cascade and to be robust to kinetic rate and protein concentration variation. Using a sensitivity analysis, we find that only variations in the number of receptors within a signalling team lead to the model not exhibiting FCD. We also discuss the ability of a cell with multiple receptor types to display FCD and explain how a particular receptor configuration may be used to elucidate the two experimentally determined regimes of FCD behaviour. All findings are discussed in respect of the experimental literature.
Resumo:
The purpose of this paper is to investigate several analytical methods of solving first passage (FP) problem for the Rouse model, a simplest model of a polymer chain. We show that this problem has to be treated as a multi-dimensional Kramers' problem, which presents rich and unexpected behavior. We first perform direct and forward-flux sampling (FFS) simulations, and measure the mean first-passage time $\tau(z)$ for the free end to reach a certain distance $z$ away from the origin. The results show that the mean FP time is getting faster if the Rouse chain is represented by more beads. Two scaling regimes of $\tau(z)$ are observed, with transition between them varying as a function of chain length. We use these simulations results to test two theoretical approaches. One is a well known asymptotic theory valid in the limit of zero temperature. We show that this limit corresponds to fully extended chain when each chain segment is stretched, which is not particularly realistic. A new theory based on the well known Freidlin-Wentzell theory is proposed, where dynamics is projected onto the minimal action path. The new theory predicts both scaling regimes correctly, but fails to get the correct numerical prefactor in the first regime. Combining our theory with the FFS simulations lead us to a simple analytical expression valid for all extensions and chain lengths. One of the applications of polymer FP problem occurs in the context of branched polymer rheology. In this paper, we consider the arm-retraction mechanism in the tube model, which maps exactly on the model we have solved. The results are compared to the Milner-McLeish theory without constraint release, which is found to overestimate FP time by a factor of 10 or more.
Resumo:
The too diverse representation of ENSO in a coupled GCM limits one’s ability to describe future change of its properties. Several studies pointed to the key role of atmosphere feedbacks in contributing to this diversity. These feedbacks are analyzed here in two simulations of a coupled GCM that differ only by the parameterization of deep atmospheric convection and the associated clouds. Using the Kerry–Emanuel (KE) scheme in the L’Institut Pierre-Simon Laplace Coupled Model, version 4 (IPSL CM4; KE simulation), ENSO has about the right amplitude, whereas it is almost suppressed when using the Tiedke (TI) scheme. Quantifying both the dynamical Bjerknes feedback and the heat flux feedback in KE, TI, and the corresponding Atmospheric Model Intercomparison Project (AMIP) atmosphere-only simulations, it is shown that the suppression of ENSO in TI is due to a doubling of the damping via heat flux feedback. Because the Bjerknes positive feedback is weak in both simulations, the KE simulation exhibits the right ENSO amplitude owing to an error compensation between a too weak heat flux feedback and a too weak Bjerknes feedback. In TI, the heat flux feedback strength is closer to estimates from observations and reanalysis, leading to ENSO suppression. The shortwave heat flux and, to a lesser extent, the latent heat flux feedbacks are the dominant contributors to the change between TI and KE. The shortwave heat flux feedback differences are traced back to a modified distribution of the large-scale regimes of deep convection (negative feedback) and subsidence (positive feedback) in the east Pacific. These are further associated with the model systematic errors. It is argued that a systematic and detailed evaluation of atmosphere feedbacks during ENSO is a necessary step to fully understand its simulation in coupled GCMs.