18 resultados para Reduction (Chemistry)

em CentAUR: Central Archive University of Reading - UK


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A manipulated increase in acid deposition (15 kg S ha(-1)), carried out for three months in a mature Scots pine (Pinus sylvestris) stand on a podzol, acidified the soil and raised dissolved Al at concentrations above the critical level of 5 mg l(-1) previously determined in a controlled experiment with Scots pine seedlings. The induced soil acidification reduced tree fine root density and biomass significantly in the top 15 cm of soil in the field. The results suggested that the reduction in fine root growth was a response not simply to high Al in solution but to the depletion of exchangeable Ca and Mg in the organic layer, K deficiency, the increase in NH4:NO3 ratio in solution and the high proton input to the soil by the acid manipulation. The results from this study could not justify the hypothesis of Al-induced root damage under field conditions, at least not in the short term. However, the study suggests that a short exposure to soil acidity may affect the fine root growth of mature Scots pine.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chiral N-heterocyclic carbene–borane complexes have been synthesised, and have been shown to reduce ketones with Lewis acid promotion. Chiral N-heterocyclic carbene–borane and –diorganoborane complexes can reduce ketones with enantioselectivities up to 75% and 85% ee, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Anthraquinone immobilised onto the surface of indigo microcrystals enhances the reductive dissolution of indigo to leuco-indigo. Indigo reduction is driven by glucose in aqueous NaOH and a vibrating gold disc electrode is employed to monitor the increasing leuco-indigo concentration with time. Anthraquinone introduces a strong catalytic effect which is explained by invoking a molecular "wedge effect'' during co-intercalation of Na+ and anthraquinone into the layered indigo crystal structure. The glucose-driven indigo reduction, which is in effective in 0.1 M NaOH at 65 degrees C, becomes facile and goes to completion in the presence of anthraquinone catalyst. Electron microscopy of indigo crystals before and after reductive dissolution confirms a delamination mechanism initiated at the edges of the plate-like indigo crystals. Catalysis occurs when the anthraquinone-indigo mixture reaches a molar ratio of 1:400 (at 65 degrees C; corresponding to 3 mu M anthraquinone) with excess of anthraquinone having virtually no effect. A strong temperature effect ( with a composite E-A approximate to 120 kJ mol(-1)) is observed for the reductive dissolution in the presence of anthraquinone. The molar ratio and temperature effects are both consistent with the heterogeneous nature of the anthraquinone catalysis in the aqueous reaction mixture.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The human immunodeficiency virus (HIV) envelope (Env) glycoprotein (gp) 120 is a highly disulfide-bonded molecule that attaches HIV to the lymphocyte surface receptors CD4 and CXCR4. Conformation changes within gp120 result from binding and trigger HIV/cell fusion. Inhibition of lymphocyte surface-associated protein-disulfide isomerase (PDI) blocks HIV/cell fusion, suggesting that redox changes within Env are required. Using a sensitive assay based on a thiol reagent, we show that (i) the thiol content of gp120, either secreted by mammalian cells or bound to a lymphocyte surface enabling CD4 but not CXCR4 binding, was 0.5-1 pmol SH/pmol gp120 (SH/gp120), whereas that of gp120 after its interaction with a surface enabling both CD4 and CXCR4 binding was raised to 4 SH/gp120; (ii) PDI inhibitors prevented this change; and (iii) gp120 displaying 2 SH/gp120 exhibited CD4 but not CXCR4 binding capacity. In addition, PDI inhibition did not impair gp120 binding to receptors. We conclude that on average two of the nine disulfides of gp120 are reduced during interaction with the lymphocyte surface after CXCR4 binding prior to fusion and that cell surface PDI catalyzes this process. Disulfide bond restructuring within Env may constitute the molecular basis of the post-receptor binding conformational changes that induce fusion competence.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the title family, the ONO donor ligands are the acetylhydrazones of salicylaidehyde (H2L1) and 2-hydroxyacetophenone (H2L2) (general abbreviation, H2L). The reaction of bis(acetylacetonato)oxovanadium(IV) with a mixture of tridentate H2L and a bidentate NN donor [e.g., 2,2'-bipyridine(bpy) or 1,10-phenanthroline(phen), hereafter B] ligands in equimolar ratio afforded the tetravalent complexes of the type [(VO)-O-IV(L)(B)]; complexes (1)-(4) whereas, if B is replaced by 8-hydroxyquinoline(Hhq) (which is a bidentate ON donor ligand), the above reaction mixture yielded the pentavalent complexes of the type [(VO)-O-V(L)(hq)]; complexes (5) and (6). Aerial oxygen is most likely the oxidant (for the oxidation of V-IV -> V-V) in the synthesis of pentavalent complexes (5) and (6). [(VO)-O-IV(L)(B)] complexes are one electron paramagnetic and display axial EPR spectra, while the [(VO)-O-V(L)(hq)] complexes are diamagnetic. The X-ray structure of [(VO)-O-V(L-2)(hq)] (6) indicates that H2L2 ligand is bonded with the vanadium meridionally in a tridentate dinegative fashion through its phenolic-O, enolic-O and imine-N atoms. The general bond length order is: oxo < phenolato < enolato. The V-O (enolato) bond is longer than V-O (phenolato) bond by similar to 0.07 angstrom and is identical with V-O (carboxylate) bond. H-1 NMR spectrum of (6) in CDCl3 solution indicates that the binding nature in the solid state is also retained in solution. Complexes (1)(4) display two ligand-field transitions in the visible region near 820 and 480 nm in DMF solution and exhibit irreversible oxidation peak near +0.60 V versus SCE in DMSO solution, while complexes (5) and (6) exhibit only LMCT band near 535 nm and display quasi-reversible one electron reduction peak near -0.10 V versus SCE in CH2Cl2 solution. The VO3+-VO2+ E-1/2 values shift considerably to more negative values when neutral NN donor is replaced by anionic ON donor species and it also provides better VO3+ binding via phenolato oxygen. For a given bidentate ligand, E-1/2 increases in the order: (L-2)(2-) < (L-1)(2-). (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Four tridentate dibasic ONO donor hydrazone ligands derived from the condensation of benzoylhydrazine with either 2-hydroxyacetophenone or its para substituted derivatives (H2L1-4, general abbreviation H2L) have been used as primary ligands and 8-hydroxyquinoline (Hhq, a bidentate monobasic ON donor species) has been used as auxiliary ligand. The reaction of [(VO)-O-IV(acac)21 with H2L in methanol followed by the addition of Hhq in equimolar ratio under aerobic condition afforded the mixed-ligand oxovanadium(V) complexes of the type [(VO)-O-V(L)(hq)] (1-4) in excellent yield. The X-ray structure of the compound [(VO)-O-V(L-4)(hq)] (4) indicates that the H2L4 ligand is bonded with vanadium meridionally in a tridentate dinegative fashion through its deprotonated phenolic-O, deprotonated enolic-O and imine-N atoms. The V-O bond length order is: oxo < phenolato < enolato. H-1 NMR spectra of 4 in CDCl3 solution indicates that it's solid-state structure is retained in solution. Complexes are diamagnetic and exhibit only ligand to metal charge transfer (LMCT) transition band near 530 nm in CH2Cl2 solution in addition to intra-ligand pi-pi* transition band near 335 rim and they display quasi-reversible one electron reduction peak near -0.10 V versus SCE in CH2Cl2 solution. lambda(max) (for LMCT transition) and the reduction peak potential (E-p(c)) values of the complexes are found to be linearly related with the Hammett (sigma) constants of the substituents in the aryloxy ring of the hydrazone ligands. lambda(max) and E-p(c) values show large dependence d lambda(max)/d sigma = 32.54 nm and dE(p)(c)/d sigma = 0.19 V, respectively, on the Hammett constant. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two cobalt complexes, [Co(L-Se)(phen)]center dot CH2Cl2 (1) and [Co(L-Se)(N,N-Me(2)en)(CH3COO-)] (2) have been synthesized and characterized by elemental analyses, magnetic measurements, i.r. studies etc. Single crystal X- ray studies reveal that in complex (1) cobalt atom is in +2 oxidation state with trigonal bipyramidal geometry, while in complex (2) it is in +3 oxidation state and surrounded octahedrally. The asymmetric unit of complex (2) contains two crystallographically independent discrete molecules. Complex (1) was found to be paramagnetic with mu(eff) = 2.19 BM indicating a low spin cobalt(II) d(7) system, whereas complex (2) is found to be diamagnetic with cobalt(III) in low spin d(6) state. The kinetic studies on the reduction of (2) by ascorbic acid in 80% MeCN-20% H2O (v/v) at 25 degrees C reveal that the reaction proceeds through the rapid formation of inner-sphere adduct, probably by replacing the loosely coordinated AcO- group, followed by electron transfer in a slow step and is supported by a large Q (formation constant) value.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

[(VO)-O-IV(acac)(2)] reacts with an equimolar amount of benzoyl hydrazones of 2-hydroxyacetophenone (H2L1), 2-hydroxy-5-methylacetophenone (H2L2) and 5-chloro-2-hydroxyacetophenone (H2L4) in methanol to afford the penta-coordinated mixed-ligand methoxy bonded oxidovanadium(V) complexes [(VO)-O-V(L-1)-(OCHA(3))](1). [(VO)-O-V(L-2)(OCH3)](2), and [(VO)-O-V(L-4)(OCH3)](4), respectively, whereas, the similar reaction with the benzoyl hydrazone of 2-hydroxy-5-methoxyacetophenone (H2L3) producing only the hexa-coordinated dimethoxy-bridged dimeric complex [(VO)-O-V(L-3)(OCH3)](2) (3A). Similar type of hexa-coordinated dimeric analogue of 1 i.e., [(VO)-O-V(L-1)(OCH3)](2) (1A) was obtained from the reaction of [(VO)-O-IV(acac)(2)] with the equimolar amount of H2L1 in presence of half equivalent 4,4'-bipyridine in methanol while the decomposition of [(VO)-O-IV(L-2)(bipy)] complex in methanol afforded the dimeric analogue of 2 i.e., [(VO)-O-V(L-2)(OCH3)](2) (2A). All these dimeric complexes 1A-3A react with an excess amount of imidazole in methanol producing the respective monomeric complex. The X-ray structural analysis of 1-3 and their dimeric analogues 1A-3A indicates that the geometry around the vanadium center in the monomeric form is distorted square-pyramidal while that of their respective dimeric forms is distorted octahedral, where the ligands are bonded to vanadium meridionally in their fully deprotonated enol forms. Due to the formation of bridge, the V-O(methoxy) bond in the dimeric complexes is lengthened to such an extent that it becomes equal in length with the V-O(phenolate) bond in 3A and even longer in 1A and 2A, which is unprecedented. The H-1 NMR spectra of the complexes 1A-3A in CDCl3 solution, indicates that these dimeric complexes are converted appreciably into their respective monomeric form. Complexes are electro-active displaying one quasi-reversible reduction peak near +0.25 V versus SCE in CH2Cl2 solution. The E-1/2 values of the complexes show linear relationship with the Hammett parameter (sigma) of the substituents. All these VO3+-complexes are converted to the corresponding complexes with V2O34+ motif simply on refluxing them in acetone and to the complexes with VO2+ motif on reaction with 2 KOH in methanol. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

[VIVO(acac)(2)] reacts with an equimolar amount of benzoyl hydrazone of 2-hydroxyacetophenone (H2L1) or 5-chloro-2-hydroxyacetophenone (H2L2) in the presence of excess pyridine (py) in methanol to produce the quaternary [(VO)-O-V(L-1)(OCH3)(py)] (1) and [(VO)-O-V(L-2)(OCH3)(py)] (2) complexes, respectively, while under similar condition, the benzoyl hydrazones of 2-hydroxy-5-methylacetophenone (H2L3) and 2-hydroxy-5-methoxyacetophenone (H2L4) afforded only the methoxy bridged dimeric [(VO)-O-V(L-3/L-4)(OCH3)](2) complexes. The X-ray structural analysis of 1 and 2 indicates that the geometry around the metal is distorted octahedral where the three equatorial positions are occupied by the phenolate-O, enolate-O and the imine-N of the fully deprotonated hydrazone ligand in its enolic form and the fourth one by a methoxide-O atom. An oxo-O and a pyridine-N atom occupy two axial positions. Quaternary complexes exhibit one quasi-reversible one-electron reduction peak near 0.25 V versus SCE in CH2Cl2 and they decompose appreciably to the corresponding methoxy bridged dimeric complex in CDCl3 solution as indicated by their H-1 NMR spectra. These quaternary VO3+ complexes are converted to the corresponding V2O34+-complexes simply on refluxing them in acetone and to the VO2+-complexes on reaction with KOH in methanol. An equimolar amount of 8-hydroxyquinoline (Hhq) converts these quaternary complexes to the ternary [(VO)-O-V(L)(hq)] complexes in CHCl3. (C) 2009 Elsevier B. V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dinuclear trioxidic [{VOL}(2)mu-O] (1-4) complexes were synthesized from the reaction of [(VO)-O-IV(acac)(2)] with an equimolar amount of H2L [H2L is the general abbreviation of hydrazone ligands (H2L1-4) derived from the condensation of benzoyl hydrazine with either 2-hydroxyacetophenone or its para substituted derivatives] in acetone or CH2Cl2 or acetonitrile. These V2O3L2 complexes were also obtained from the reaction of VOSO4 with H2L in the presence of two equivalents sodium acetate in aqueous-methanolic (50% V/V) medium and also from the decomposition of [(VO)-O-IV(L)(bipy/phen)] complexes in CH2Cl2 Solution. Black monoclinic crystals of 2 and 4 with C2/c space group were obtained from the reaction of [(VO)-O-IV(acac)(2)], respectively, with H2L2 and H2L4 in acetone in which the respective ligands are bonded meridionally to vanadium in their fully deprotonated enol forms. The V-O bond lengths follow the order: V-O(oxo) < V-O(oxo-bridged) < V-O(phenolate) < V-O(enolate). Complexes (1-4) are diamagnetic exhibiting LMCT transition band near 380 nm in CH2Cl2 solution and they are electroactive displaying a quasi-reversible reduction peak in the 0.14-0.30 V versus SCE region. The and the reduction peak potential (E-p(c)) values show linear relationships with the Hammett constant (sigma) of the substituents in the hydrazone ligands. These dinuclear complexes are converted to the corresponding mononuclear cis dioxo complexes K(H2O)(+)[(VO2)-O-V(L)](-) (5-8) and mixed-ligand [(VO)-O-V(L)(hq)] complexes on reaction, respectively, with two equivalents KOH in methanol and two equivalents 8-hydroxyquinoline (Hhq) in CHCl3. Ascorbic acid reduces the dioxovanadium(V) complexes reversibly under aerobic condition. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To investigate the consequences of cyclometalation for electronic communication in dinuclear ruthenium complexes, a series of 2,3,5,6-tetrakis(2-pyridyl)pyrazine (tppz) bridged diruthenium complexes was prepared and studied. These complexes have a central tppz ligand bridging via nitrogen-to-ruthenium coordination bonds, while each ruthenium atom also binds either a monoanionic, N,C,N'-terdentate 2,6-bis(2'-pyridyl)phenyl (R-N boolean AND C boolean AND N) ligand or a 2,2':6',2 ''-terpyridine (tpy) ligand. The N,C,N'-, that is, biscyclometalation, instead of the latter N,N', N ''-bonding motif significantly changes the electronic properties of the resulting complexes. Starting from well-known [{Ru(tpy)}(2)(mu-tppz)](4+) (tpy = 2,2':2 '',6-terpyridine) ([3](4+)) as a model compound, the complexes [{Ru(R-N boolean AND C boolean AND N)}(mu-tppz){Ru(tpy)}](3+) (R-N boolean AND C(H)boolean AND N = 4-R-1,3-dipyridylbenzene, R = H ([4a](3+)), CO2Me ([4b](3+))), and [{Ru(R-N boolean AND C boolean AND N)}(2)(mu-tppz)](2+), (R = H ([5a](2+)), CO2Me ([5b](2+))) were prepared with one or two N,C,N'-cyclometalated terminal ligands. The oxidation and reduction potentials of cyclometalated [4](3+) and [5](2+) are shifted negatively compared to non-cyclometalated [3](4+), the oxidation processes being affected more significantly. Compared to [3](4+), the electronic spectra of [5](2+) display large bathochromic shifts of the main MLCT transitions in the visible spectral region with low-energy absorptions tailing down to the NIR region. One-electron oxidation of [3](4+) and [5](2+) gives rise to low-energy absorption bands. The comproportionation constants and NIR band shape correspond to delocalized Robin-Day class III compounds. Complexes [4a](3+) (R = H) and [4b](3+) (R = CO2Me) also exhibit strong electronic communication, and notwithstanding the large redox-asymmetry the visible metal-to-ligand charge-transfer absorption is assigned to originate from both metal centers. The potential of the first, ruthenium-based, reversible oxidation process is strongly negatively shifted. On the contrary, the second oxidation is irreversible and cyclometalated ligand-based. Upon one-electron oxidation, a weak and low-energy absorption arises.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Weathering of mine tailings in Adak results in high As concentrations in surface and ground water, sediments, and soil. In spite of the oxic conditions, As-rich surface and ground, water samples indicate As(III) species predominantly (up to 83%). Several microorganisms were isolated from the enrichment cultures that were involved in As cycling. Amongst them was Arsenicicoccus bolidensis - a novel gram-positive, facultatively anaerobic, coccus-shaped actinomycete, which actively reduced As(V) to As(III) in aqueous media. A. bolidensis reduced 0.06-0.20 mM day(-1) As(V). As(V) reduction displays a direct correlation between the initial As(V) concentration, growth rate, and biomass yield. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electrochemical reduction of the triangular clusters [Os-3(CO)(10)(alpha-dimine)] (alpha-dimine = 2,2'-bipyridine (bpy), 2,2'-bipyrimidine (bpym)) and [Os-3(CO)(10)(mu-bpym) ReBr(CO)(3)] produces primarily the corresponding radical anions. Their stability is strongly determined by the pi acceptor ability of the reducible alpha-dimine ligand, which decreases in the order mu-bpym > bpym >> bpy. Along this series, increasing delocalisation of the odd electron density in the radical anion over the Os(alpha-dimine) chelate ring causes weakening of the axial (CO)(4)Os-Os(CO)(2)(alpha-dimine) bond and its facile cleavage for alpha-diimine = bpy. In contrast, the cluster radical anion is inherently stable for the bridging bpym ligand, the strongest pi-acceptor in the studied series. In the absence of the partial delocalisation of the unpaired electron over the Re( bpym) chelate bond, the Os-3-core of the radical anion remains intact only at low temperatures. Subsequent one-electron reduction of [Os-3(CO)(10)(bpym)](center dot-) at T = 223 K gives the open-triosmium core (= Os-3*) dianion, [Os-3*(CO)(10)(bpym)](2-). Its oxidation leads to the recovery of parent [Os-3(CO)(10)( bpym)]. At room temperature, [Os-3*( CO)(10)(bpym)](2-) is formed along a two-electron (ECE) reduction path. The chemical step (C) results in the formation of an open- core radical anion that is directly reducible at the cathodic potential of the parent cluster in the second electrochemical (E) step. In weakly coordinating tetrahydrofuran, [Os-3*(CO)(10)( bpym)](2-) rapidly attacks yet non- reduced parent cluster molecules, producing the relatively stable open- core dimer [Os-3*(CO)(10)(bpym)](2)(2-) featuring two open- triangle cluster moieties connected with an ( bpym) Os - Os( bpym) bond. In butyronitrile, [Os-3*( CO)(10)(bpym)](2-) is stabilised by the solvent and the dimer [Os-3*(CO)(10)(bpym)](2)(2-) is then mainly formed by reoxidation of the dianion on reverse potential scan. The more reactive cluster [Os-3(CO)(10)(bpy)] follows the same reduction path, as supported by spectroelectrochemical results and additional valuable evidence obtained from cyclic voltammetric scans. The ultimate process in the reduction mechanism is fragmentation of the cluster core triggered by the reduction of the dimer [Os-3*(CO)(10)(alpha- diimine)](2)(2-). The products formed are [Os-2(CO)(8)](2-) and {Os(CO)(2)(alpha- diimine)}(2). The latter dinuclear fragments constitute a linear polymeric chain [Os( CO)(2)(alpha-dimine)] n that is further reducible at the alpha-dimine ligands. For alpha-dimine = bpy, the charged polymer is capable of reducing carbon dioxide. The electrochemical opening of the triosmium core in the [Os-3( CO)(10)(alpha-dimine)] clusters exhibits several common features with their photochemistry. The same Os-alpha-dimine bond dissociates in both cases but the intimate mechanisms are different.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cyclic voltammetry and ultraviolet−visible/infrared (UV−vis/IR) spectroelectrochemistry were used to study the cathodic electrochemical behavior of the osmium complexes mer-[OsIII(CO) (bpy)Cl3] (bpy = 2,2′-bipyridine) and trans(Cl)-[OsII(CO) (PrCN)(bpy)Cl2] at variable temperature in different solvents (tetrahydrofuran (THF), butyronitrile (PrCN), acetonitrile (MeCN)) and electrolytes (Bu4NPF6, Bu4NCl). The precursors can be reduced to mer-[OsII(CO) (bpy•−)Cl3]2− and trans(Cl)-[OsII(CO)(PrCN) (bpy•−)Cl2]−, respectively, which react rapidly at room temperature, losing the chloride ligands and forming Os(0) species. mer-[OsIII(CO) (bpy)Cl3] is reduced in THF to give ultimately an Os−Os-bonded polymer, probably [Os0(CO) (THF)-(bpy)]n, whereas in PrCN the well-soluble, probably mononuclear [Os0(CO) (PrCN)(bpy)], species is formed. The same products were observed for the 2 electron reduction of trans(Cl)-[OsII(CO)(PrCN) (bpy)Cl2] in both solvents. In MeCN, similar to THF, the[Os0(CO) (MeCN)(bpy)]n polymer is produced. It is noteworthy that the bpy ligand in mononuclear [Os0(CO) (PrCN)(bpy)] is reduced to the corresponding radical anion at a significantly less negative potential than it is in polymeric [Os0(CO) (THF)(bpy)]n: ΔE1/2 = 0.67 V. Major differences also exist in the IR spectra of the Os(0) species: the polymer shows a broad ν(CO) band at much smaller wavenumbers compared to the soluble Os(0) monomer that exhibits a characteristic ν(Pr-CN) band below 2200 cm−1 in addition to the intense and narrow ν(CO) absorption band. For the first time, in this work the M0-bpy(M = Ru, Os) mono- and dicarbonyl species soluble in PrCN have been formulated as a mononuclear complex. Density functional theory (DFT) and time-dependent-DFT calculations confirm the Os(0) oxidation state and suggest that [Os0(CO)(PrCN)(bpy)] is a square planar moiety. The reversible bpy-based reduction of [Os0(CO) (PrCN)(bpy)] triggers catalytic reduction of CO2 to CO and HCOO−.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A phosphoramidite modified [FeFe]H2ase mimic is studied as a model for photodriven production of H2. On cathodic activation, the pyridyl–phosphoramidite complex exhibits a strongly enhanced rate of proton reduction over the previously reported pyridylphosphine model at the same overpotential. Analysis of the cyclic voltammograms shows an apparent H2 evolution rate strongly influenced by the presence of both side-bound pyridyl and phosphorous-bound dimethylamino moieties at the phosphoramidite ligands. This difference is ascribed to the basic amines acting as proton relays.