7 resultados para Red wine
em CentAUR: Central Archive University of Reading - UK
Resumo:
Epidemiological studies suggest that a moderate consumption of anthocyanins may be associated with protection against coronary heart disease. The main dietary sources of anthocyanins include red-coloured fruits and red wine. Although dietary anthocyanins comprise a diverse mixture of molecules, little is known how structural diversity relates to their bioavailability and biological function. The aim of the present study was to evaluate the absorption and metabolism of the 3-monoglucosides of delphinidin, cyanidin, petunidin, peonidin and malvidin in humans and to examine both the effect of consuming a red wine extract on plasma antioxidant status and on monocyte chemoattractant protein I production in healthy human subjects. After a 12-h overnight fast, seven healthy volunteers received 12 g of an anthocyanin extract and provided 13 blood samples in the 24 h following the test meal. Furthermore, urine was collected during this 24-h period. Anthocyanins were detected in their intact form in both plasma and urine samples. Other anthocyanin metabolites could also be detected in plasma and urine and were identified as glucuronides of peonidin and malvidin. Anthocyanins and their metabolites appeared in plasma about 30 min after ingestion of the test meal and reached their maximum value around 1.6 h later for glucosides and 2.5 h for glucuronides. Total urinary excretion of red wine anthocyanins was 0.05+/-0.01% of the administered dose within 24 h. About 94% of the excreted anthocyanins was found in urine within 6 h. In spite of the low concentration of anthocyanins found in plasma, an increase in the antioxidant capacity and a decrease in MCP-1 circulating levels in plasma were observed. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
An in vitro batch culture fermentation experiment was conducted with fecal inocula from three healthy volunteers in the presence and absence of a red wine extract. Changes in main bacterial groups were determined by FISH during a 48 h fermentation period. The catabolism of main flavonoids (i.e., flavan-3-ols and anthocyanins) and the formation of a wide a range of phenolic microbial metabolites were determined by a targeted UPLC-PAD-ESI-TQ MS method. Statistical analysis revealed that catechol/pyrocatechol, as well as 4-hydroxy-5-(phenyl)-valeric, 3- and 4-hydroxyphenylacetic, phenylacetic, phenylpropionic, and benzoic acids, showed the greatest increases in concentration during fermentation, whereas 5-(3′-hydroxyphenyl)-γ-valerolactone, its open form 4-hydroxy-5-(3′-hydroxyphenyl)-valeric acid, and 3,4-dihydroxyphenylacetic acid represented the largest interindividual variations in the catabolism of red wine polyphenols. Despite these changes, microbial catabolism did not produce significant changes in the main bacterial groups detected, although a slight inhibition of the Clostridium histolyticum group was observed.
Resumo:
Whey is a by-product of cheese manufacturing and therefore investigating new applications of whey proteins will contribute towards the valorisation of whey and hence waste reduction. This study shows for the first time a detailed comparison of the effectiveness of gelatin and β-lactoglobulin (β-LG) as fining agents. Gelatin was more reactive than whey proteins to tannic acid as shown by both the astringency method (with ovalbumin as a precipitant) and the tannins determination method (with methylcellulose as a precipitant). The two proteins showed similar selectivity for polyphenols but β-LG did not remove as much catechin. The fining agent was removed completely or to a trace level after centrifugation followed by filtration which minimises its potential allergenicity. In addition, improved understanding of protein–tannin interactions was obtained by fluorescence, size measurement and isothermal titration calorimetry (ITC). Overall this study demonstrates that whey proteins have the potential of reducing astringency in red wine and can find a place in enology.
Resumo:
Epidemiological studies have suggested an inverse correlation between red wine consumption and the incidence of cardiovascular and neurodegenerative disorders. Although white wines are generally low in polyphenol content as compared to red wines, champagne has been shown to contain relatively high amounts of phenolic acids that may exert protective cellular actions in vivo. In this study, we have investigated the potential cardioprotective and neuroprotective effects of champagne. Our data suggest that a daily moderate consumption of champagne may improve vascular performance via the delivery of phenolic constituents capable of improving NO bioavailability and the modulation of metalloproteinase. Moreover, champagne intervention significantly increased spatial working memory in aged animals, whilst no improvement was observed in the presence of alcohol. Together, these data indicate that polyphenols present in champagne may induce cardioprotective and neuroprotective effects, delaying the onset of degenerative disorders.
Resumo:
Epidemiological studies have suggested an inverse correlation between red wine consumption and the incidence of CVD. However, Champagne wine has not been fully investigated for its cardioprotective potential. In order to assess whether acute and moderate Champagne wine consumption is capable of modulating vascular function, we performed a randomised, placebo-controlled, cross-over intervention trial. We show that consumption of Champagne wine, but not a control matched for alcohol, carbohydrate and fruit-derived acid content, induced an acute change in endothelium-independent vasodilatation at 4 and 8 h post-consumption. Although both Champagne wine and the control also induced an increase in endothelium-dependent vascular reactivity at 4 h, there was no significant difference between the vascular effects induced by Champagne or the control at any time point. These effects were accompanied by an acute decrease in the concentration of matrix metalloproteinase (MMP-9), a significant decrease in plasma levels of oxidising species and an increase in urinary excretion of a number of phenolic metabolites. In particular, the mean total excretion of hippuric acid, protocatechuic acid and isoferulic acid were all significantly greater following the Champagne wine intervention compared with the control intervention. Our data suggest that a daily moderate consumption of Champagne wine may improve vascular performance via the delivery of phenolic constituents capable of improving NO bioavailability and reducing matrix metalloproteinase activity.
Resumo:
During red wine aging, there is a loss of anthocyanins and the formation of various other pigments, so-called vitisins A, which are formed through the chemical interaction of the original anthocyanins with pyruvic acid. The objective of this study was to investigate the antioxidant activities of the most abundant anthocyanins present in red wine (glycosides of delphinidin, petunidin, and malvidin) and their corresponding vitisins A. Anthocyanins exhibited a higher iron reducing as well as 2,2'-azinobis (3-ethyl-benzothiazoline-6-sulfonate) and peroxyl radical scavenging activity than their corresponding vitisins A. Delphinidin showed the highest antioxidant effect of the tested compounds in all of the assays used. Furthermore, we studied the effect of anthocyanins and vitisins A on platelet aggregation and monocyte and endothelial function. Anthocyanins and vitisins did not affect nitric oxide production and tumor necrosis factor-alpha (TNF-alpha) secretion in lipopolysaccharide plus interferon-gamma-activated macrophages. Furthermore, anthocyanins and vitisins did not change collagen-induced platelet aggregation in vitro. However, anthocyanins and to a lesser extent vitisins exhibited protective effects against TNF-alpha-induced monocyte chemoattractant protein production in primary human endothelial cells.
Resumo:
White wines are generally low in polyphenol content as compared to red wines. However, Champagne wines have been shown to contain relatively high amounts of phenolic acids that may exert protective cellular actions in vivo. In this study, we have investigated the potential neuroprotective effects of Champagne wine extracts, and individual phenolics present in these extracts, against peroxynitrite-induced injury. Organic and aqueous Champagne wine extracts exhibited potent neuroprotective activity against peroxynitrite-induced injury at low concentrations (0.1 mu g/mL). This protection appeared to be in part due to the cellular actions of individual components found in the organic extracts, notably tyrosol, caffeic acid, and gallic acid. These phenolics were observed to exert potent neuroprotection at concentrations between 0.1 and 10 mu M. Together, these data suggest that polyphenols present in Champagne wine may induce a neuroprotective effect against oxidative neuronal injury.