5 resultados para Red Light Laughter

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Photoselective plastic films with low transmission to far-red (FR) light (700-800 nm) are now available so that plants grown in greenhouses clad with such plastics exhibit reduced stem extension and, consequently, plant height. Here we compare the action of three FR-absorbing polythene films on extension growth of Petunia (Petunia X hybrida) cv. 'Express Blue' and Impatiens walleriana cv. 'Accent Deep Pink' with plants grown under a control polythene film (standard UVI/EVA film). Half of the plants under the control film were treated with a chemical plant growth regulator (PGR; diaminozide, B-Nine) and half were sprayed with water alone. Possible negative effects of such film plastics on flowering, and on fresh and dry weight accumulation, were also quantified. Plants were harvested destructively when all plants in each treatment had reached the first open flower stage. In Petunia, plant height was reduced by all three FR-filtering films and by PGR-treatment. The FR-filtering films giving the highest R:FR ratios also reduced plant height in Impatiens. Leaf number, leaf area and total dry Weight in both species. were greatest in the controls and smallest under films with the lowest PAR transmission. The film giving the highest R:FR ratio and PAR transmission also produced the most compact Petunia plants;, while the film. with. the lowest PAR transmission produced the least compact plants in both species. There was no significant effect of treatments on time to first flower in Impatiens. However, Petunia plants under low PAR transmission films took longer to flower. Plastic-films which filter out FR light to increase the R:FR ratio, combined With high PAR transmission, can therefore be used as an alternative to conventional PGRs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Since the emergence of the AIDS pandemic in sub-Saharan Africa, male mobility has been highlighted as one of the reasons for the spread of the disease with men employing the services of commercial sex workers while away from home. However, sex workers' mobility and the implications of this for their access to prevention services, has largely been ignored. This paper, based on multi-method qualitative research with 60 young sex workers in two Ethiopian towns, reveals that sex workers are highly mobile, moving in order to attract a wider or different client base, for adventure and to conceal illnesses which might be associated with AIDS. In addition, sex workers are affected by restrictions on their movements, with girls working in bars and red-light areas having little free time to access projects. This paper advocates that policy approaches need to take account of this mobility in three ways: first, by exploring ways for girls to access information and maintain contact with support structures while moving between places of work; second, by building the capacity of sex workers to take greater control over decision-making in their day-to-day lives and third, by developing outreach strategies for taking services into bars and red-light areas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Integration of natural ventilation and daylighting in a single installation would make both technologies more attractive. One method for the integration is the use of concentric light pipe and ventilation stack. By constructing the light pipe using dichroic materials, the infrared part of the solar radiation is allowed to be transmitted to the stack but the visible light is guided by the light pipe into a room. The heat gain to the interior can be reduced and the thermal stack effect strengthened. Work presented here involved the experimental and computational evaluation of dichroic materials for enhancing both natural stack ventilation and daylighting. The transmittance of a dichroic light pipe was found to be similar to that of a light pipe with a 95% specular reflectance. The infra-red radiation transmitted through the dichroic material into a passive stack was found to enhance the natural ventilation flow by up to 14%. The effect is greater in summer than in winter, which is highly desirable as there is often a lack of driving force for natural stack ventilation in summer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The absorption spectra of phytoplankton in the visible domain hold implicit information on the phytoplankton community structure. Here we use this information to retrieve quantitative information on phytoplankton size structure by developing a novel method to compute the exponent of an assumed power-law for their particle-size spectrum. This quantity, in combination with total chlorophyll-a concentration, can be used to estimate the fractional concentration of chlorophyll in any arbitrarily-defined size class of phytoplankton. We further define and derive expressions for two distinct measures of cell size of mixed populations, namely, the average spherical diameter of a bio-optically equivalent homogeneous population of cells of equal size, and the average equivalent spherical diameter of a population of cells that follow a power-law particle-size distribution. The method relies on measurements of two quantities of a phytoplankton sample: the concentration of chlorophyll-a, which is an operational index of phytoplankton biomass, and the total absorption coefficient of phytoplankton in the red peak of visible spectrum at 676 nm. A sensitivity analysis confirms that the relative errors in the estimates of the exponent of particle size spectra are reasonably low. The exponents of phytoplankton size spectra, estimated for a large set of in situ data from a variety of oceanic environments (~ 2400 samples), are within a reasonable range; and the estimated fractions of chlorophyll in pico-, nano- and micro-phytoplankton are generally consistent with those obtained by an independent, indirect method based on diagnostic pigments determined using high-performance liquid chromatography. The estimates of cell size for in situ samples dominated by different phytoplankton types (diatoms, prymnesiophytes, Prochlorococcus, other cyanobacteria and green algae) yield nominal sizes consistent with the taxonomic classification. To estimate the same quantities from satellite-derived ocean-colour data, we combine our method with algorithms for obtaining inherent optical properties from remote sensing. The spatial distribution of the size-spectrum exponent and the chlorophyll fractions of pico-, nano- and micro-phytoplankton estimated from satellite remote sensing are in agreement with the current understanding of the biogeography of phytoplankton functional types in the global oceans. This study contributes to our understanding of the distribution and time evolution of phytoplankton size structure in the global oceans.