68 resultados para Recursive logit

em CentAUR: Central Archive University of Reading - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, the mixed logit (ML) using Bayesian methods was employed to examine willingness-to-pay (WTP) to consume bread produced with reduced levels of pesticides so as to ameliorate environmental quality, from data generated by a choice experiment. Model comparison used the marginal likelihood, which is preferable for Bayesian model comparison and testing. Models containing constant and random parameters for a number of distributions were considered, along with models in ‘preference space’ and ‘WTP space’ as well as those allowing for misreporting. We found: strong support for the ML estimated in WTP space; little support for fixing the price coefficient a common practice advocated and adopted in the environmental economics literature; and, weak evidence for misreporting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using mixed logit models to analyse choice data is common but requires ex ante specification of the functional forms of preference distributions. We make the case for greater use of bounded functional forms and propose the use of the Marginal Likelihood, calculated using Bayesian techniques, as a single measure of model performance across non nested mixed logit specifications. Using this measure leads to very different rankings of model specifications compared to alternative rule of thumb measures. The approach is illustrated using data from a choice experiment regarding GM food types which provides insights regarding the recent WTO dispute between the EU and the US, Canada and Argentina and whether labelling and trade regimes should be based on the production process or product composition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the 'rice-wheat' and the 'cotton-wheat' farming systems of Pakistan's Punjab, late planting of wheat is a perennial problem due to often delayed harvesting of the previously planted and late maturing rice and cotton crops. This leaves very limited time for land preparation for 'on-time' planting of wheat. 'No-tillage' technologies that reduce the turn-round time for wheat cultivation after rice and cotton have been developed, but their uptake has not been as expected.-This paper attempts to determine the farm and farmer characteristics and other socio-economic factors that influence the adoption of 'no-tillage' technologies'. Logit models were developed for the analysis undertaken. In the 'cotton-wheat' system personal characteristics like education, tenancy status, attitude towards risk implied in the use of new technologies and contact with extension agents are the main factors that affect adoption. As regards the 'rice-wheat' system, resource endowments such as farm size, access to a 'no-tillage' drill, clayey soils and the area sown to the rice-wheat sequence along with tenancy and contact with extension agents were dominant in explaining adoption. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we Study the invariant intervals, the globally attractivity of the two equilibrium points, and the oscillatory behavior of tile solutions of the difference equation x(n =) ax(n-1) - bx(n-2)/c + x(n-2), n = 1,2,......, where a, b. c > 0. (C) 2003 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The recursive circulant RC(2(n), 4) enjoys several attractive topological properties. Let max_epsilon(G) (m) denote the maximum number of edges in a subgraph of graph G induced by m nodes. In this paper, we show that max_epsilon(RC(2n,4))(m) = Sigma(i)(r)=(0)(p(i)/2 + i)2(Pi), where p(0) > p(1) > ... > p(r) are nonnegative integers defined by m = Sigma(i)(r)=(0)2(Pi). We then apply this formula to find the bisection width of RC(2(n), 4). The conclusion shows that, as n-dimensional cube, RC(2(n), 4) enjoys a linear bisection width. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we study the global stability of the difference equation x(n) = a + bx(n-1) + cx(n-1)(2)/d - x(n-2), n = 1,2,....., where a, b greater than or equal to 0 and c, d > 0. We show that one nonnegative equilibrium point of the equation is a global attractor with a basin that is determined by the parameters, and every positive Solution of the equation in the basin exponentially converges to the attractor. (C) 2003 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this Paper, we study the invariant intervals, the global attractivity of the equilibrium points, and the asymptotic behavior of the solutions of the difference equation x(n) = ax(n-1) + bx(n-2) / c + dx(n-1)x(n-2), n =1, 2, ..., where a greater than or equal to 0, b, c, d > 0. (C) 2004 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Symmetrical behaviour of the covariance matrix and the positive-definite criterion are used to simplify identification of single-input/single-output systems using recursive least squares. Simulation results are obtained and these are compared with ordinary recursive least squares. The adaptive nature of the identifier is verified by varying the system parameters on convergence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recursive Learning Control (RLC) has the potential to significantly reduce the tracking error in many repetitive trajectory applications. This paper presents an application of RLC to a soil testing load frame where non-adaptive techniques struggle with the highly nonlinear nature of soil. The main purpose of the controller is to apply a sinusoidal force reference trajectory on a soil sample with a high degree of accuracy and repeatability. The controller uses a feedforward control structure, recursive least squares adaptation algorithm and RLC to compensate for periodic errors. Tracking error is reduced and stability is maintained across various soil sample responses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes and tests a new framework for weighting recursive out-of-sample prediction errors according to their corresponding levels of in-sample estimation uncertainty. In essence, we show how to use the maximum possible amount of information from the sample in the evaluation of the prediction accuracy, by commencing the forecasts at the earliest opportunity and weighting the prediction errors. Via a Monte Carlo study, we demonstrate that the proposed framework selects the correct model from a set of candidate models considerably more often than the existing standard approach when only a small sample is available. We also show that the proposed weighting approaches result in tests of equal predictive accuracy that have much better sizes than the standard approach. An application to an exchange rate dataset highlights relevant differences in the results of tests of predictive accuracy based on the standard approach versus the framework proposed in this paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The l1-norm sparsity constraint is a widely used technique for constructing sparse models. In this contribution, two zero-attracting recursive least squares algorithms, referred to as ZA-RLS-I and ZA-RLS-II, are derived by employing the l1-norm of parameter vector constraint to facilitate the model sparsity. In order to achieve a closed-form solution, the l1-norm of the parameter vector is approximated by an adaptively weighted l2-norm, in which the weighting factors are set as the inversion of the associated l1-norm of parameter estimates that are readily available in the adaptive learning environment. ZA-RLS-II is computationally more efficient than ZA-RLS-I by exploiting the known results from linear algebra as well as the sparsity of the system. The proposed algorithms are proven to converge, and adaptive sparse channel estimation is used to demonstrate the effectiveness of the proposed approach.