3 resultados para Recommendation systems

em CentAUR: Central Archive University of Reading - UK


Relevância:

30.00% 30.00%

Publicador:

Resumo:

If the fundamental precepts of Farming Systems Research were to be taken literally then it would imply that for each farm 'unique' solutions should be sought. This is an unrealistic expectation, but it has led to the idea of a recommendation domain, implying creating a taxonomy of farms, in order to increase the general applicability of recommendations. Mathematical programming models are an established means of generating recommended solutions, but for such models to be effective they have to be constructed for 'truly' typical or representative situations. The multi-variate statistical techniques provide a means of creating the required typologies, particularly when an exhaustive database is available. This paper illustrates the application of this methodology in two different studies that shared the common purpose of identifying types of farming systems in their respective study areas. The issues related with the use of factor and cluster analyses for farm typification prior to building representative mathematical programming models for Chile and Pakistan are highlighted. (C) 2003 Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Web service is one of the most fundamental technologies in implementing service oriented architecture (SOA) based applications. One essential challenge related to web service is to find suitable candidates with regard to web service consumer’s requests, which is normally called web service discovery. During a web service discovery protocol, it is expected that the consumer will find it hard to distinguish which ones are more suitable in the retrieval set, thereby making selection of web services a critical task. In this paper, inspired by the idea that the service composition pattern is significant hint for service selection, a personal profiling mechanism is proposed to improve ranking and recommendation performance. Since service selection is highly dependent on the composition process, personal knowledge is accumulated from previous service composition process and shared via collaborative filtering where a set of users with similar interest will be firstly identified. Afterwards a web service re-ranking mechanism is employed for personalised recommendation. Experimental studies are conduced and analysed to demonstrate the promising potential of this research.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Knowledge recommendation has become a promising method in supporting the clinicians decisions and improving the quality of medical services in the constantly changing clinical environment. However, current medical knowledge management systems cannot understand users requirements accurately and realize personalized recommendation. Therefore this paper proposes an ontological approach based on semiotic principles to personalized medical knowledge recommendations. In particular, healthcare domain knowledge is conceptualized and an ontology-based user profile is built. Furthermore, the personalized recommendation mechanism is illustrated.