19 resultados para Recombinant Human Dnase

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Leptin is produced predominantly by white adipocytes; in adults it regulates appetite and energy expenditure but its role in the neonate remains to be fully established. Objectives: To examine the effects of acute administration of recombinant human leptin on the endocrine profile and thermoregulation of neonatal pigs. Methods: 24 pairs of siblings (n = 48) were administered with either a single dose (4 mu g ml(-1) kg(-1) body weight) of leptin (L: n = 24) or a placebo (P: n = 24) on day 6 of neonatal life. Rectal temperature was recorded, and tissue samples were taken at 1 (n = 12), 2 (n = 12), 4 (n = 12) or 6 (n = 12) hours post-administration. Plasma concentrations of hormones and metabolites were determined in conjunction with messenger RNA (mRNA) for leptin and uncoupling protein-2. Results: Plasma leptin increased following leptin administration, and differences in concentrations of insulin, thyroxine and non-esterified fatty acids were observed between the two groups. Initially, rectal temperature decreased in L pigs but returned to start values by 1.5 h. This decline in rectal temperature was delayed in placebo animals, resulting in differences between treatments at 1.5 and 2 h. Conclusions: Acute leptin administration alters the endocrine profile of pigs and influences the thermoregulatory ability of the neonate. Copyright (C) 2007 S. Karger AG, Basel.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Benzyl salicylate, benzyl benzoate and butylphenylmethylpropional (Lilial) are added to bodycare cosmetics used around the human breast. We report here that all three compounds possess oestrogenic activity in assays using the oestrogen-responsive MCF7 human breast cancer cell line. At 3 000 000-fold molar excess, they were able to partially displace [H-3]oestradiol from recombinant human oestrogen receptors ER alpha and ER beta, and from cytosolic ER of MCF7 cells. At concentrations in the range of 5 x 10(-5) to 5 x 10(-4) M, they were able to increase the expression of a stably integrated oestrogen-responsive reporter gene (ERE-CAT) and of the endogenous oestrogen-responsive pS2 gene in MCF7 cells, albeit to a lesser extent than with 10(-8) M 17 beta-oestradiol. They increased the proliferation of oestrogen-dependent MCF7 cells over 7 days, which could be inhibited by the antioestrogen fulvestrant, suggesting an ER-mediated mechanism. Although the extent of stimulation of proliferation over 7 days was lower with these compounds than with 10(-8) M 17 beta-oestradiol, given a longer time period of 35 days the extent of proliferation with 10(-4) M benzyl salicylate, benzyl benzoate or butylphenylmethylpropional increased to the same magnitude as observed with 10(-8) M 17 beta-oestradiol over 14 days. This demonstrates that benzyl salicylate, benzyl benzoate and butylphenylmethylpropional are further chemical components of cosmetic products which give oestrogenic responses in a human breast cancer cell line in culture. Further research is now needed to investigate whether oestrogenic responses are detectable using in vivo models and the extent to which these compounds might be absorbed through human skin and might enter human breast tissues. Copyright (C) 2009 John Wiley & Sons, Ltd.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We previously described the use of an established reverse genetics system for the generation of recombinant human influenza A viruses from cloned cDNAs. Here, we have assembled a set of plasmids to allow recovery of the avian H5N1 influenza virus A/Turkey/England/50-92/91 entirely from cDNA. This system enables us to introduce mutations or truncations into the cDNAs to create mutant viruses altered specifically in a chosen gene. These mutant viruses can then be used in future pathogenesis studies in chickens and in studies to understand the host range restrictions of avian influenza viruses in humans.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Rat kidney glutamine transaminase K (GTK) exhibits broad specificity both as an aminotransferase and as a cysteine S-conjugate beta-lyase. The beta-lyase reaction products are pyruvate, ammonium and a sulfhydryl-containing fragment. We show here that recombinant human GTK (rhGTK) also exhibits broad specificity both as an aminotransferase and as a cysteine S-conjugate beta-lyase. S-(1,1,2,2-Tetrafluoroethyl)-L-CySteine is an excellent aminotransferase and beta-lyase substrate of rhGTK. Moderate aminotransferase and beta-lyase activities occur with the chemopreventive agent Se-methyl-L-selenocysteine. L-3-(2-Naphthyl)alanine, L-3-(1-naphthyl)alanine, 5-S-L-cysteinyldopamine and 5-S-L-cysteinyl-L-DOPA are measurable aminotransferase substrates, indicating that the active site can accommodate large aromatic amino acids. The alpha-keto acids generated by transamination/L-amino acid oxidase activity of the two catechol cysteine S-conjugates are unstable. A slow rhGTK-catalyzed beta-elimination reaction, as measured by pyruvate formation, was demonstrated with 5-S-L-CysteinyIdopamine, but not with 5-S-L-CySteinyl-L-DOPA. The importance of transamination, oxidation and beta-elimination reactions involving 5-S-L-cysteinyldopamine, 5-S-L-cysteinyt-L-DOPA and Se-methyl-L-selenocysteirte in human tissues and their biological relevance are discussed. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

As a consequence of its widespread use as an antimicrobial agent in consumer goods, triclosan has become distributed ubiquitously across the ecosystem, and recent reports that it can cause endocrine disruption in aquatic species has increased concern. It is reported here that triclosan possesses intrinsic oestrogenic and androgenic activity in a range of assays in vitro which could provide some explanation for the endocrine disrupting properties described in aquatic populations. In terms of oestrogenic activity, triclosan displaced [H-3]oestradiol from oestrogen receptors (ER) of MCF7 human breast cancer cells and from recombinant human ER alpha/ER beta. Triclosan at 10(-5) M completely inhibited the induction of the oestrogen-responsive ERE-CAT reporter gene in MCF7 cells by 10(-10) M 17 beta-oestradiol and the stimulation of growth of MCF7 human breast cancer cells by 10(-10) M 17 beta-oestradiol. On its own, 1 mu M triclosan increased the growth of MCF7 cells over 21 days. Triclosan also had androgenic activity. It displaced [H-3]testosterone from binding to the ligand binding domain of the rat androgen receptor (AR). Triclosan was able to inhibit the induction of the androgen-responsive LTR-CAT reporter gene in S115 mouse mammary tumour cells by 10(-9) M testosterone and in T47D human breast cancer cells by 10(-8) M testosterone at concentrations of 10(-7) M and 10(-6) M, respectively. Triclosan at 2 x 10(-5) M antagonized the stimulation of the growth of S115+A mouse mammary tumour cells by 10(-9) M testosterone. The finding that triclosan has oestrogenic and androgenic activity warrants further investigation in relation to both endocrine disruption of aquatic wildlife and any possible impact on human health. Copyright (C) 2007 John Wiley & Sons, Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

At sites of chronic inflammation, such as in the inflamed rheumatoid joint, activated neutrophils release hydrogen peroxide (H2O2) and the enzyme myeloperoxidase to catalyse the formation of hypochlorous acid (HOCl). 3-chlorotyrosine, a marker of HOCl in vivo, has been observed in synovial fluid proteins from rheumatoid arthritis patients. However the mechanisms of HOCl-induced cytotxicity are unknown. We determined the molecular mechanisms by which HOCl induced cell death in human mesenchymal progenitor cells (MPCs) differentiated into a chondrocytic phenotype as a model of human cartilage cells and show that HOCl induced rapid Bax conformational change, mitochondrial permeability and release of intra-mitochondrial pro-apoptotic proteins which resulted in nuclear translocation of AIF and EndoG. siRNA-mediated knockdown of Bax substantially prevented mitochondrial permeability, release of intra-mitochondrial pro-apoptotic proteins. Cell death was inhibited by siRNA-mediated knockdown of Bax, AIF or EndoG. Although we observed several biochemical markers of apoptosis, caspase activation was not detected either by western blotting, fluorescence activity assays or by using caspase inhibitors to inhibit cell death. This was further supported by findings that (1) in vitro exposure of recombinant human caspases to HOCl caused significant inhibition of caspase activity and (2) the addition of HOCl to staurosporine-treated MPCs inhibited the activity of cellular caspases. Our results show for the first time that HOCl induced Bax-dependent mitochondrial permeability which led to cell death without caspase activity by processes involving AIF/EndoG-dependent pathways. Our study provides a novel insight into the potential mechanisms of cell death in the inflamed human joint. (c) 2006 Elsevier Inc. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

TREK-1 is a background K channel important in the regulation of neuronal excitability. Here, we demonstrate that recombinant human TREK-1 is activated by low concentrations of carbon monoxide (CO) and nitric oxide (NO), applied via their respective donor molecules. Related channels hTASK-1 and hTASK-3 were unaffected by CO. Effects of both CO and NO were prevented by preincubation of cells with the protein kinase G inhibitor, Rp-8-Br-PET-cGMPS. The effects of CO were independent of NO formation. At higher concentrations, both NO and CO were inhibitory. As both NO and CO are important neuronal gasotransmitters and TREK is crucial in regulating neuronal excitability, our results provide a novel means by which these gases may modulate neuronal activity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Despite being generally perceived as detrimental to the cardiovascular system, testosterone has marked beneficial vascular effects; most notably it acutely and directly causes vasodilatation. Indeed, men with hypotestosteronaemia can present with myocardial ischemia and angina which can be rapidly alleviated by infusion of testosterone. To date, however, in vitro studies have failed to provide a convincing mechanism to account for this clinically important effect. Here, using whole-cell patch-clamp recordings to measure current flow through recombinant human L-type Ca2+ channel alpha(1C) subunits (Ca(v)1.2), we demonstrate that testosterone inhibits such currents in a concentration-dependent manner. Importantly, this occurs over the physiological range of testosterone concentrations (IC50 34 nM), and is not mimicked by the metabolite 5alpha-androstan-17beta-ol-3-one (DHT), nor by progesterone or estradiol, even at high (10 microM) concentration. L-type Ca2+ channels in the vasculature are also important clinical targets for vasodilatory dihydropyridines. A single point mutation (T1007Y) almost completely abolishes nifedipine sensitivity in our recombinant expression system. Crucially, the same mutation renders the channels insensitive to testosterone. Our data strongly suggest, for the first time, the molecular requirements for testosterone binding to L-type Ca2+ channels, thereby supporting its beneficial role as an endogenous Ca2+ channel antagonist in the treatment of cardiovascular disease.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Coxsackievirus B3 (CVB3) infection can result in myocarditis, which in turn may lead to a protracted immune response and subsequent dilated cardiomyopathy. Human decay-accelerating factor (DAF), a binding receptor for CVB3, was synthesized as a soluble IgG1-Fc fusion protein (DAF-Fc). In vitro, DAF-Fc was able to inhibit complement activity and block infection by CVB3, although blockade of infection varied widely among strains of CVB3. To determine the effects of DAF-Fc in vivo, 40 adolescent A/J mice were infected with a myopathic strain of CVB3 and given DAF-Fc treatment 3 days before infection, during infection, or 3 days after infection; the mice were compared with virus alone and sham-infected animals. Sections of heart, spleen, kidney, pancreas, and liver were stained with hematoxylin and eosin and submitted to in situ hybridization for both positive-strand and negative-strand viral RNA to determine the extent of myocarditis and viral infection, respectively. Salient histopathologic features, including myocardial lesion area, cell death, calcification and inflammatory cell infiltration, pancreatitis, and hepatitis were scored without knowledge of the experimental groups. DAF-Fc treatment of mice either preceding or concurrent with CVB3 infection resulted in a significant decrease in myocardial lesion area and cell death and a reduction in the presence of viral RNA. All DAF-Fc treatment groups had reduced infectious CVB3 recoverable from the heart after infection. DAF-Fc may be a novel therapeutic agent for active myocarditis and acute dilated cardiomyopathy if given early in the infectious period, although more studies are needed to determine its mechanism and efficacy.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Methods for recombinant production of eukaryotic membrane proteins, yielding sufficient quantity and quality of protein for structural biology, remain a challenge. We describe here, expression and purification optimisation of the human SERCA2a cardiac isoform of Ca2+ translocating ATPase, using Saccharomyces cerevisiae as the heterologous expression system of choice. Two different expression vectors were utilised, allowing expression of C-terminal fusion proteins with a biotinylation domain or a GFP- His8 tag. Solubilised membrane fractions containing the protein of interest were purified onto Streptavidin-Sepharose, Ni-NTA or Talon resin, depending on the fusion tag present. Biotinylated protein was detected using specific antibody directed against SERCA2 and, advantageously, GFP-His8 fusion protein was easily traced during the purification steps using in-gel fluorescence. Importantly, talon resin affinity purification proved more specific than Ni-NTA resin for the GFP-His8 tagged protein, providing better separation of oligomers present, during size exclusion chromatography. The optimised method for expression and purification of human cardiac SERCA2a reported herein, yields purified protein (> 90%) that displays a calcium-dependent thapsigargin-sensitive activity and is suitable for further biophysical, structural and physiological studies. This work provides support for the use of Saccharomyces cerevisiae as a suitable expression system for recombinant production of multi-domain eukaryotic membrane proteins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The emergence in 2009 of a swine-origin H1N1 influenza virus as the first pandemic of the 21st Century is a timely reminder of the international public health impact of influenza viruses, even those associated with mild disease. The widespread distribution of highly pathogenic H5N1 influenza virus in the avian population has spawned concern that it may give rise to a human influenza pandemic. The mortality rate associated with occasional human infection by H5N1 virus approximates 60%, suggesting that an H5N1 pandemic would be devastating to global health and economy. To date, the H5N1 virus has not acquired the propensity to transmit efficiently between humans. The reasons behind this are unclear, especially given the high mutation rate associated with influenza virus replication. Here we used a panel of recombinant H5 hemagglutinin (HA) variants to demonstrate the potential for H5 HA to bind human airway epithelium, the predominant target tissue for influenza virus infection and spread. While parental H5 HA exhibited limited binding to human tracheal epithelium, introduction of selected mutations converted the binding profile to that of a current human influenza strain HA. Strikingly, these amino-acid changes required multiple simultaneous mutations in the genomes of naturally occurring H5 isolates. Moreover, H5 HAs bearing intermediate sequences failed to bind airway tissues and likely represent mutations that are an evolutionary "dead end." We conclude that, although genetic changes that adapt H5 to human airways can be demonstrated, they may not readily arise during natural virus replication. This genetic barrier limits the likelihood that current H5 viruses will originate a human pandemic.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Natural killer (NK) cell recognition of influenza virus-infected cells involves hemagglutinin (HA) binding to sialic acid (SA) on activating NK receptors. SA also acts as a receptor for the binding of influenza virus to its target host cells. The SA binding properties of H3N2 influenza viruses have been observed to change during circulation in humans: recent isolates are unable to agglutinate chicken red blood cells and show reduced affinity for synthetic glycopolymers representing SA-alpha-2,3-lactose (3'SL-PAA) and SA-alpha-2,6-N-acetyl lactosamine (6'SLN-PAA) carbohydrates. Here, NK lysis of cells infected with human H3N2 influenza viruses isolated between 1969 and 2003 was analyzed. Cells infected with recent isolates (1999 to 2003) were found to be lysed less effectively than cells infected with older isolates (1969 to 1996). This change occurred concurrently with the acquisition of two new potential glycosylation site motifs in RA. Deletion of the potential glycosylation site motif at 133 to 135 in HA1 from a recent isolate partially restored the agglutination phenotype to a recombinant virus, indicating that the HA-SA interaction is inhibited by the glycosylation modification. Deletion of either of the recently acquired potential glycosylation sites from HA led to increased NK lysis of cells infected with recombinant viruses carrying modified HA. These results indicate that alterations in RA glycosylation may affect NK cell recognition of influenza virus-infected cells in addition to virus binding to host cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigated the ability of a selection of human influenza A viruses, including recent clinical isolates, to induce IFN-beta production in cultured cell lines. In contrast to the well-characterized laboratory strain A/PR/8/34, several, but not all, recent isolates of H3N2 viruses resulted in moderate IFN-beta stimulation. Through the generation of recombinant viruses, we were able to show that this is not due to a loss of the ability of the NS1 genes to suppress IFN-beta induction; indeed, the NS1 genes behaved similarly with respect to their abilities to block dsRNA signaling. Interestingly, replication of A/Sydney/5/97 virus was less Susceptible to pre-treatment with IFN-alpha than the other viruses. In contrast to the universal effect on dsRNA signaling, we noted differences in the effect of NS1 proteins on expression of interferon stimulated genes and also genes induced by a distinct pathway. The majority of NS1 proteins blocked expression From both IFN-dependent and TNF-dependent promoters by an apparent post-transcriptional mechanism. The NS1 gene of A/PR/8/34 NS1 did not confer these blocks. We noted striking differences in the Cellular localization of different influenza A virus NS1 proteins during infection, which might explain differences in biological activity. (C) 2005 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives: Influenza A H3N2 viruses isolated recently have characteristic receptor binding properties that may decrease susceptibility to neuraminidase inhibitor drugs. A panel of clinical isolates and recombinant viruses generated by reverse genetics were characterized and tested for susceptibility to zanamivir. Methods: Plaque reduction assays and neuraminidase enzyme inhibition assays were used to assess susceptibility to zanamivir. Receptor binding properties of the viruses were characterized by differential agglutination of red blood cells (RBCs) from different species. Sequence analysis of the haemagglutinin (HA) and neuraminidase (NA) genes was carried out. Results: Characterization of a panel of H3N2 clinical isolates from 1968 to 2000 showed a gradual decrease in agglutination of chicken and guinea pig RBCs over time, although all isolates could agglutinate turkey RBCs equally. Sequence analysis of the HA and NA genes identified mutations in conserved residues of the HA1 receptor binding site, in particular Leu-226 --> Ile-226/Val-226, and modification of potential glycosylation site motifs. This may be indicative of changes in virus binding to sialic acid (SA) receptors in recent years. Although recent isolates had reduced susceptibility to zanamivir in MDCK cell based plaque reduction assays, no difference was found in an NA enzyme-inhibition assay. Assays with recombinant isogenic viruses showed that the recent HA, but not the NA, conferred reduced susceptibility to zanamivir. Conclusion: This study demonstrates that recent clinical isolates of influenza A H3N2 virus no longer agglutinate chicken RBCs, but despite significant receptor binding changes as a result of changes in HA, there was little variation in sensitivity of the NA to zanamivir.