86 resultados para Receptors, Cytokine -- physiology

em CentAUR: Central Archive University of Reading - UK


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pattern-recognition receptors (PRRs) detect molecular signatures of microbes and initiate immune responses to infection. Prototypical PRRs such as Toll-like receptors (TLRs) signal via a conserved pathway to induce innate response genes. In contrast, the signaling pathways engaged by other classes of putative PRRs remain ill defined. Here, we demonstrate that the β-glucan receptor Dectin-1, a yeast binding C type lectin known to synergize with TLR2 to induce TNFα and IL-12, can also promote synthesis of IL-2 and IL-10 through phosphorylation of the membrane proximal tyrosine in the cytoplasmic domain and recruitment of Syk kinase. syk−/− dendritic cells (DCs) do not make IL-10 or IL-2 upon yeast stimulation but produce IL-12, indicating that the Dectin-1/Syk and Dectin-1/TLR2 pathways can operate independently. These results identify a novel signaling pathway involved in pattern recognition by C type lectins and suggest a potential role for Syk kinase in regulation of innate immunity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ionotropic gamma-amino butyric acid (GABA) receptors composed of heterogeneous molecular subunits are major mediators of inhibitory responses in the adult CNS. Here, we describe a novel ionotropic GABA receptor in mouse cerebellar Purkinje cells (PCs) using agents reported to have increased affinity for rho subunit-containing GABA(C) over other GABA receptors. Exogenous application of the GABA(C)-preferring agonist cis-4-aminocrotonic acid (CACA) evoked whole-cell currents in PCs, whilst equimolar concentrations of GABA evoked larger currents. CACA-evoked currents had a greater sensitivity to the selective GABA(C) antagonist (1,2,5,6-tetrahydropyridin-4-yl)methylphosphinic acid (TPMPA) than GABA-evoked currents. Focal application of agonists produced a differential response profile; CACA-evoked currents displayed a much more pronounced attenuation with increasing distance from the PC soma, displayed a slower time-to-peak and exhibited less desensitization than GABA-evoked currents. However, CACA-evoked currents were also completely blocked by bicuculline, a selective agent for GABA(A) receptors. Thus, we describe a population of ionotropic GABA receptors with a mixed GABA(A)/GABA(C) pharmacology. TPMPA reduced inhibitory synaptic transmission at interneurone-Purkinje cell (IN-PC) synapses, causing clear reductions in miniature inhibitory postsynaptic current (mIPSC) amplitude and frequency. Combined application of NO-711 (a selective GABA transporter subtype 1 (GAT-1) antagonist) and SNAP-5114 (a GAT-(2)/3/4 antagonist) induced a tonic GABA conductance in PCs; however, TPMPA had no effect on this current. Immunohistochemical studies suggest that rho subunits are expressed predominantly in PC soma and proximal dendritic compartments with a lower level of expression in more distal dendrites; this selective immunoreactivity contrasted with a more uniform distribution of GABA(A) alpha 1 subunits in PCs. Finally, co-immunoprecipitation studies suggest that rho subunits can form complexes with GABA(A) receptor alpha 1 subunits in the cerebellar cortex. Overall, these data suggest that rho subunits contribute to functional ionotropic receptors that mediate a component of phasic inhibitory GABAergic transmission at IN-PC synapses in the cerebellum.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cholecystitis is one of the most common gastrointestinal diseases. Inflammation induces the activation of proteases that can signal to cells by cleaving protease-activated receptors (PARs) to induce hemostasis, inflammation, pain, and repair. However, the distribution of PARs in the gallbladder is unknown, and their effects on gallbladder function have not been fully investigated. We localized immunoreactive PAR(1) and PAR(2) to the epithelium, muscle, and serosa of mouse gallbladder. mRNA transcripts corresponding to PAR(1) and PAR(2), but not PAR(4), were detected by RT-PCR and sequencing. Addition of thrombin and a PAR(1)-selective activating peptide (TFLLRN-NH(2)) to the serosal surface of mouse gallbladder mounted in an Ussing chamber stimulated an increase in short-circuit current in wild-type but not PAR(1) knockout mice. Similarly, serosally applied trypsin and PAR(2) activating peptide (SLIGRL-NH(2)) increased short-circuit current in wild-type but not PAR(2) knockout mice. Proteases and activating peptides strongly inhibited electrogenic responses to subsequent stimulation with the same agonist, indicating homologous desensitization. Removal of HCO(3)(-) ions from the serosal buffer reduced responses to thrombin and trypsin by >80%. Agonists of PAR(1) and PAR(2) increase intracellular Ca(2+) concentration in isolated and cultured gallbladder epithelial cells. The COX-2 inhibitor meloxicam and an inhibitor of CFTR prevented the stimulatory effect of PAR(1) but not PAR(2). Thus PAR(1) and PAR(2) are expressed in the epithelium of the mouse gallbladder, and serosally applied proteases cause a HCO(3)(-) secretion. The effects of PAR(1) but not PAR(2) depend on generation of prostaglandins and activation of CFTR. These mechanisms may markedly influence fluid and electrolyte secretion of the inflamed gallbladder when multiple proteases are generated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

-Aminobutyric acid type A (GABAA) receptors, a family of Cl-permeable ion channels, mediate fast synaptic inhibition as postsynaptically enriched receptors for -aminobutyric acid at GABAergic synapses. Here we describe an alternative type of inhibition mediated byGABAA receptors present on neocortical glutamatergic nerve terminals and examine the underlying signaling mechanism(s). By monitoring the activity of the presynaptic CaM kinase II/synapsin I signaling pathway in isolated nerve terminals, we demonstrate that GABAA receptor activation correlated with an increase in basal intraterminal [Ca2]i. Interestingly, this activation of GABAA receptors resulted in a reduction of subsequent depolarization-evoked Ca2 influx, which thereby led to an inhibition of glutamate release. To investigate how the observed GABAA receptor-mediated modulation operates, we determined the sensitivity of this process to the Na-K-2Cl cotransporter 1 antagonist bumetanide, as well as substitution of Ca2 with Ba2, or Ca2/calmodulin inhibition by W7. All of these treatments abolished the modulation by GABAA receptors. Application of selective antagonists of voltage-gated Ca2 channels (VGCCs) revealed that the GABAA receptor-mediated modulation of glutamate release required the specific activity of L- and R-type VGCCs. Crucially, the inhibition of release by these receptors was abolished in terminals isolated from R-type VGCC knock-out mice. Together, our results indicate that a functional coupling between nerve terminal GABAA receptors and L- or R-type VGCCs is mediated by Ca2/calmodulin-dependent signaling. This mechanism provides a GABA-mediated control of glutamatergic synaptic activity by a direct inhibition of glutamate release.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To examine the basis of emotional changes to the voice, physiological and electroglottal measures were combined with acoustic speech analysis of 30 men performing a computer task in which they lost or gained points under two levels of difficulty. Predictions of the main effects of difficulty and reward on the voice were not borne out by the data. Instead, vocal changes depended largely on interactions between gain versus loss and difficulty. The rate at which the vocal folds open and close (fundamental frequency; f0) was higher for loss than for gain when difficulty was high, but not when difficulty was low. Electroglottal measures revealed that f0 changes corresponded to shorter glottal open times for the loss conditions. Longer closed and shorter open phases were consistent with raised laryngeal tension in difficult loss conditions. Similarly, skin conductance indicated higher sympathetic arousal in loss than gain conditions, particularly when difficulty was high. The results provide evidence of the physiological basis of affective vocal responses, confirming the utility of measuring physiology and voice in the study of emotion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modulation of host immunity is an important potential mechanism by which probiotics confer health benefits. This study was designed to investigate the effects of a probiotic strain, Lactobacillus casei Shirota (LcS), on immune function, using human peripheral blood mononuclear cells (PBMC) in vitro. In addition, the role of monocytes in LcS-induced immunity was also explored. LcS promoted natural killer (NK) cell activity and preferentially induced expression of CD69 and CD25 on CD8+ and CD56+ subsets in the absence of any other stimulus. LcS also induced production of IL-1β, IL-6, TNF-α, IL-12 and IL-10 in the absence of lipopolysaccharide (LPS). In the presence of LPS, LcS enhanced IL-1β production, but inhibited LPS-induced IL-10 and IL-6 production, and had no further effect on TNF-α and IL-12 production. Monocyte-depletion significantly reduced the impact of LcS on lymphocyte activation, cytokine production and NK cell activity. In conclusion, LcS preferentially activated cytotoxic lymphocytes in both the innate and specific immune system, which suggests that LcS could potentiate the destruction of infected cells in the body. LcS also induced both pro-inflammatory and anti-inflammatory cytokine production in the absence of LPS, but inhibited LPS-induced cytokine production in some cases. Monocytes play an important role in LcS-induced immunological responses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

After parturition, the somatotropic axis of the dairy cow is uncoupled, partly because of reduced concentration of liver-specific GH receptor (GHR) 1A. Estradiol-17 beta (E-2) concentrations increase at parturition and E-2 upregulates suppressors of cytokine signaling-2 (SOCS-2) mRNA expression, potentially inhibiting GH signaling. Therefore, we hypothesized that SOCS-2 mRNA is upregulated after parturition. Multiparous Holstein cows (n = 18) were dried off 45 d before expected parturition and fed diets to meet nutrient requirements at ad libitum or limited dry matter intake during the dry period. All cows were fed the same diet ad libitum from calving until 4 wk after parturition. Blood samples were collected weekly and more frequently near parturition. Liver biopsies obtained at -21, -7, 2, and 28 d relative to parturition were assessed for SOCS-2 and GHR 1A mRNA by quantitative real-time reverse-transcription PCR. The relative amount of SOCS-2 mRNA increased after parturition with both treatments and was greater on d 2 for cows limit-fed during the dry period compared with cows fed at ad libitum dry matter intake. Plasma E2 concentrations increased on d -13, -5 and 1 relative to parturition and the increases were greater in limit-fed cows. Plasma GH concentration was greater for limit-fed cows and increased after parturition in all cows. The amount of GHR 1A mRNA did not differ between diets but decreased on d 2. In addition to reduced GHR 1A, increased SOCS-2 mRNA after parturition, perhaps because of increased E-2, may further uncouple GH signaling in the liver of the transition dairy cow.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aims were to examine ovarian expression of bone morphogenetic protein (BMP) ligands/receptor mRNAs in the chicken and to test the hypothesis that theca-derived BMP(s) modulates granulosa cell function in a paracrine manner. RT-PCR revealed expression of multiple BMPs in granulosa and theca cells from prehierarchical and preovulatory follicles with greater expression in theca cells; both cell types expressed BMP receptors-1A, -1B and -II consistent with tissue responsiveness. Preovulatory granulosa cells F1, F2 and F3/4) were cultured with BMP-6 (expressed by theca but not granulosa) in the presence/absence of LH, FSH or 8-Br-cAMP. RMP-6 increased 'basal' and gonadotrophin-induced inhibin-A and progesterone secretion by each cell type but did not enhance the effect of 8-Br-cAMP. This indicates that the observed synergism between BMP-6 and gonadotrophin might involve BMP-induced up-regulation of gonadotrophin receptors. In support of this, BMP-6 alone increased LH-receptor (LHR) mRNA in F1 cells and FSH-receptor (FSHR) mRNA in F1, F2 and F3/4 cells. RMP-6 also enhanced LH/FSH-induced LHR transcript amount in each cell type but did not raise FSHR transcript amounts above those induced by BMP-6 alone. To further explore BMP6 action on inhibin-A secretion, we quantified inhibin/activin subunits (alpha, beta(A), beta(B)) mRNAs. Consistent with its effect on inhibin-A secretion, BMP-6 enhanced 'basal' expression of alpha- and beta(A)-Subunit mRNA in F1, F2 and F3/4 cells, and beta(B)-subunit mRNA in F3/4 cells. BMP-6 markedly enhanced FSH/LH-induced expression of alpha-subunit in all follicles and FSH-induced beta(A)-subunit in F2 and F3/4 follicles but not in F1 follicles. Neither BMP-6 alone, nor FSH/LH alone, affected 'basal' OB mRNA abundance. However, co-treatment with gonadotrophin and BMP-6 greatly increased beta(B)-subunit expression, the response being lowest in F1 follicles and greatest in F3/4 follicles. Collectively, these results support the hypothesis that intra-ovarian OMPs of thecal origin have a paracrine role in modulating granulosa cell function in the chicken in a preovulatory stage-dependent manner.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In positron emission tomography and single photon emission computed tomography studies using D2 dopamine (DA) receptor radiotracers, a decrease in radiotracer binding potential (BP) is usually interpreted in terms of increased competition with synaptic DA. However, some data suggest that this signal may also reflect agonist (DA)-induced increases in D2 receptor (D2R) internalization, a process which would presumably also decrease the population of receptors available for binding to hydrophilic radioligands. To advance interpretation of alterations in D2 radiotracer BP, direct methods of assessment of D2R internalization are required. Here, we describe a confocal microscopy-based approach for the quantification of agonist-dependent receptor internalization. The method relies upon double-labeling of the receptors with antibodies directed against intracellular as well as extracellular epitopes. Following agonist stimulation, DA D2R internalization was quantified by differentiating, in optical cell sections, the signal due to the staining of the extracellular from intracellular epitopes of D2Rs. Receptor internalization was increased in the presence of the D2 agonists DA and bromocriptine, but not the D1 agonist SKF38393. Pretreatment with either the D2 antagonist sulpiride, or inhibitors of internalization (phenylarsine oxide and high molarity sucrose), blocked D2-agonist induced receptor internalization, thus validating this method in vitro. This approach therefore provides a direct and streamlined methodology for investigating the pharmacological and mechanistic aspects of D2R internalization, and should inform the interpretation of results from in vivo receptor imaging studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

What is already known about this subject center dot Flavonoids are largely recognized as potential inhibitors of platelet function, through nonspecific mechanisms such as antioxidant activity and/or inhibition of several enzymes and signalling proteins. center dot In addition, we, and few others, have shown that certain antiaggregant flavonoids may behave as specific TXA2 receptor (TP) ligands in platelets. center dot Whether flavonoids interact with TP isoforms in other cell types is not known, and direct evidence that flavonoid-TP interaction inhibits signalling downstream TP has not been shown. What this study adds center dot This study first demonstrates that certain flavonoids behave as ligands for both TP isoforms, not only in platelets, but also in human myometrium and in TP-transfected HEK 293T cells. center dot Differences in the effect of certain flavonoids in platelet signalling, induced by either U46619 or thrombin, suggest that abrogation of downstream TP signalling is related to their specific blockage of the TP, rather than to a nonspecific effect on tyrosine kinases or other signalling proteins. Flavonoids may affect platelet function by several mechanisms, including antagonism of TxA(2) receptors (TP). These TP are present in many tissues and modulate different signalling cascades. We explored whether flavonoids affect platelet TP signalling, and if they bind to TP expressed in other cell types. Platelets were treated with flavonoids, or other selected inhibitors, and then stimulated with U46619. Similar assays were performed in aspirinized platelets activated with thrombin. Effects on calcium release were analysed by fluorometry and changes in whole protein tyrosine phosphorylation and activation of ERK 1/2 by Western blot analysis. The binding of flavonoids to TP in platelets, human myometrium and TP alpha- and TP beta-transfected HEK 293T cells was explored using binding assays and the TP antagonist H-3-SQ29548. Apigenin, genistein, luteolin and quercetin impaired U46619-induced calcium mobilization in a concentration-dependent manner (IC50 10-30 mu M). These flavonoids caused a significant impairment of U46619-induced platelet tyrosine phosphorylation and of ERK 1/2 activation. By contrast, in aspirin-treated platelets all these flavonoids, except quercetin, displayed minor effects on thrombin-induced calcium mobilization, ERK 1/2 and total tyrosine phosphorylation. Finally, apigenin, genistein and luteolin inhibited by > 50% H-3-SQ29548 binding to different cell types. These data further suggest that flavonoids may inhibit platelet function by binding to TP and by subsequent abrogation of downstream signalling. Binding of these compounds to TP occurs in human myometrium and in TP-transfected HEK 293T cells and suggests that antagonism of TP might mediate the effects of flavonoids in different tissues.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ovarian follicle development is regulated through endocrine and local mechanisms. Increasing evidence indicates roles for transforming growth factor beta superfamily members, including inhibins and activins. We recently identified divergent expression of mRNAs encoding activin receptors (ActR) and inhibin co-receptor betaglycan in chicken follicles at different stages of maturation. Here, we compare the actions of LH and FSH (0, 1, 10, 100 ng/ml) on levels of mRNA for ActRI, ActRIIA, ActRIIB and betaglycan in chicken granulosa and theca cells (GC and TC) from preovulatory (F1) and prehierarchical (6-8 mm) follicles. The expression of mRNAs for LH-R and FSH-R and production of inhibin A, oestradiol and progesterone were also quantified. FSH decreased ActRIIB and ActRI mRNA levels in 6-8 mm GC, whereas LH increased the mRNA levels. Both LH and FSH enhanced ActRIIA (5- and 8.5-fold) and betaglycan mRNA expression (2- and 3.5-fold) in 6-8 mm GC. In 6-8 mm TC, LH and FSH both increased the betaglycan mRNA level (7- and 3.5-fold respectively) but did not affect ActRI, ActRIIA and ActRIIB transcript levels. In F1 GC, both LH and FSH stimulated ActRI (2- and 2.4-fold), ActRIIB (3.2- and 2.7-fold) and betaglycan (7- and 4-fold) mRNA levels, while ActRIIA mRNA was unaffected. In F1 TC, LH and FSH reduced ActRIIA (35-50%) and increased (4.5- and 7.6-fold) betaglycan mRNA, but had no effect on ActRI and ActRIIB transcript levels. Results support the hypothesis that expression of ActR and betaglycan are differentially regulated by gonadotrophins during follicle maturation in the hen. This may represent an important mechanism for fine-tuning follicle responsiveness to local and systemic activins and inhibins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ovarian follicle development is primarily regulated by an interplay between the pituitary gonadotrophins, LH and FSH, and ovary-derived steroids. Increasing evidence implicates regulatory roles of transforming growth factor-beta (TGF beta) superfamily members, including inhibins and activins. The aim of this study was to identify the expression of mRNAs encoding key receptors of the inhibin/activin system in ovarian follicles ranging from 4 mm in diameter to the dominant F1 follicle (similar to 40 turn). Ovaries were collected (n=16) from inid-sequence hens maintained on a long-day photoschedule (16h of light:8 h of darkness). All follicles removed were dissected into individual granulosa and thecal layers. RNA was extracted and cDNA synthesized. Real-time quantitative PCR was used to quantify the expression of niRNA encoding betaglycan, activin receptor (ActR) subtypes (type-I, -IIA and -IIB) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH); receptor expression data were normalized to GAPDH expression. Detectable levels of ActRI, -IIA and -IIB and the inhibin co-receptor (betaglycan) expression were found in all granulosa and thecal layers analysed. Granulosa ActRI mRNA peaked (P < 0(.)05) in 8-9(.)9 mm follicles, whereas ActRIIA rose significantly from 6-7(.)9 mm to 8-9(.)9 nun, before filling to F3/2; levels then rose sharply (3-fold) to F1 levels. Granulosa betaglycan niRNA expression rose 3-fold from 4-5(.)9 min to 8-9(.)9 mm, before falling 4-fold to F3/2; levels then rose sharply (4-fold) to F1 levels. ActRIIB levels did not vary significantly during follicular development. Thecal ActRI mRNA expression was similar from 4-7(.)9 mm then decreased significantly to a nadir at the F4 position, before increasing 2-fold to the F1 (P < 0(.)05). Although thecal ActRIIB and -IIA expression did not vary significantly from 4 nim to F3, ActRIIB expression increased significantly (2-fold) from F3 to F1 and ActIIA, increased 22-fold from F2 to F1 (P < 0(.)05). Thecal betaglycan fell to a nadir at F6 after follicle selection; levels then increased significantly to F2, before filling similar to 50% in the F I. In all follicles studied expression of betaglycan and ActRI (granulosa: 1-0(.)65, P < 0-001, n=144/group; theca: r=0(.)49, P < 0-001, n=144/group) was well correlated. No significant correlations were identified between betaglycan and ActRIIA or -IIB. Considering all follicles analysed, granulosa mRNA expression of betaglycan, ActRI ActRIIA and ActRIIB were all significantly lower than in corresponding thecal tissue (betaglycan, 11(.)4-fold; ActRIIB, 5(.)1-fold; ActR(.) 3-8-fold: ActRIIA, 2(.)8-fold). The co-localization of type-I and -II activin receptors and betaglycan on granulosa and thecal cells are consistent with a local auto/paracrine role of inhibins and activins in modulating ovarian follicle development, selection and progression in the domestic fowl.