9 resultados para Receiver Operator Characteristic (ROC) curve

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The estimation of prediction quality is important because without quality measures, it is difficult to determine the usefulness of a prediction. Currently, methods for ligand binding site residue predictions are assessed in the function prediction category of the biennial Critical Assessment of Techniques for Protein Structure Prediction (CASP) experiment, utilizing the Matthews Correlation Coefficient (MCC) and Binding-site Distance Test (BDT) metrics. However, the assessment of ligand binding site predictions using such metrics requires the availability of solved structures with bound ligands. Thus, we have developed a ligand binding site quality assessment tool, FunFOLDQA, which utilizes protein feature analysis to predict ligand binding site quality prior to the experimental solution of the protein structures and their ligand interactions. The FunFOLDQA feature scores were combined using: simple linear combinations, multiple linear regression and a neural network. The neural network produced significantly better results for correlations to both the MCC and BDT scores, according to Kendall’s τ, Spearman’s ρ and Pearson’s r correlation coefficients, when tested on both the CASP8 and CASP9 datasets. The neural network also produced the largest Area Under the Curve score (AUC) when Receiver Operator Characteristic (ROC) analysis was undertaken for the CASP8 dataset. Furthermore, the FunFOLDQA algorithm incorporating the neural network, is shown to add value to FunFOLD, when both methods are employed in combination. This results in a statistically significant improvement over all of the best server methods, the FunFOLD method (6.43%), and one of the top manual groups (FN293) tested on the CASP8 dataset. The FunFOLDQA method was also found to be competitive with the top server methods when tested on the CASP9 dataset. To the best of our knowledge, FunFOLDQA is the first attempt to develop a method that can be used to assess ligand binding site prediction quality, in the absence of experimental data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: This paper presents a detailed study of fractal-based methods for texture characterization of mammographic mass lesions and architectural distortion. The purpose of this study is to explore the use of fractal and lacunarity analysis for the characterization and classification of both tumor lesions and normal breast parenchyma in mammography. Materials and methods: We conducted comparative evaluations of five popular fractal dimension estimation methods for the characterization of the texture of mass lesions and architectural distortion. We applied the concept of lacunarity to the description of the spatial distribution of the pixel intensities in mammographic images. These methods were tested with a set of 57 breast masses and 60 normal breast parenchyma (dataset1), and with another set of 19 architectural distortions and 41 normal breast parenchyma (dataset2). Support vector machines (SVM) were used as a pattern classification method for tumor classification. Results: Experimental results showed that the fractal dimension of region of interest (ROIs) depicting mass lesions and architectural distortion was statistically significantly lower than that of normal breast parenchyma for all five methods. Receiver operating characteristic (ROC) analysis showed that fractional Brownian motion (FBM) method generated the highest area under ROC curve (A z = 0.839 for dataset1, 0.828 for dataset2, respectively) among five methods for both datasets. Lacunarity analysis showed that the ROIs depicting mass lesions and architectural distortion had higher lacunarities than those of ROIs depicting normal breast parenchyma. The combination of FBM fractal dimension and lacunarity yielded the highest A z value (0.903 and 0.875, respectively) than those based on single feature alone for both given datasets. The application of the SVM improved the performance of the fractal-based features in differentiating tumor lesions from normal breast parenchyma by generating higher A z value. Conclusion: FBM texture model is the most appropriate model for characterizing mammographic images due to self-affinity assumption of the method being a better approximation. Lacunarity is an effective counterpart measure of the fractal dimension in texture feature extraction in mammographic images. The classification results obtained in this work suggest that the SVM is an effective method with great potential for classification in mammographic image analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Scope: The use of biomarkers in the objective assessment of dietary intake is a high priority in nutrition research. The aim of this study was to examine pentadecanoic acid (C15:0) and heptadecanoic acid (C17:0) as biomarkers of dairy foods intake. Methods and results: The data used in the present study were obtained as part of the Food4me Study. Estimates of C15:0 and C17:0 from dried blood spots and intakes of dairy from an FFQ were obtained from participants (n=1,180) across 7 countries. Regression analyses were used to explore associations of biomarkers with dairy intake levels and receiver operating characteristic (ROC) analyses were used to evaluate the fatty acids. Significant positive associations were found between C15:0 and total intakes of high-fat dairy products. C15:0 showed good ability to distinguish between low and high consumers of high-fat dairy products. Conclusion: C15:0 can be used as a biomarker of high-fat dairy intake and of specific high-fat dairy products. Both C15:0 and C17:0 performed poorly for total dairy intake highlighting the need for caution when using these in epidemiological studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Screening instruments for autistic-spectrum disorders have not been compared in the same sample. Aims To compare the Social Communication Questionnaire (SCQ), the Social Responsiveness Scale (SRS) and the Children's Communication Checklist (CCC). Method Screen and diagnostic assessments on 119 children between 9 and 13 years of age with special educational needs with and without autistic-spectrum disorders were weighted to estimate screen characteristics for a realistic target population. Results The SCQ performed best (area under receiver operating characteristic curve (AUC)=0.90; sensitivity. 6; specificity 0.78). The SRS had a lower AUC (0.77) with high sensitivity (0.78) and moderate specificity (0.67). The CCC had a high sensitivity but lower specificity (AUC=0.79; sensitivity 0.93; specificity 0.46). The AUC of the SRS and CCC was lower for children with IQ < 70. Behaviour problems reduced specificity for all three instruments. Conclusions The SCQ, SRS and CCC showed strong to moderate ability to identify autistic-spectrum disorder in this at-risk sample of school-age children with special educational needs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aim This paper presents Convergence Insufficiency Symptom Survey (CISS) and orthoptic findings in a sample of typical young adults who considered themselves to have normal eyesight apart from weak spectacles. Methods The CISS questionnaire was administered,followed by a full orthoptic evaluation, to 167 university undergraduate and postgraduate students during the recruitment phase of another study. The primary criterion for recruitment to this study was that participants‘feltthey had normal eyesight'. A CISS score of ≥21 was used to define‘significant’symptoms, and convergence insufficiency (CI) was defined as convergence≥8cm from the nose with a fusion range <15Δ base-out with small or no exophoria. Results The group mean CISS score was 15.4. In all, 17(10%) of the participants were diagnosed with CI, but 11(65%) of these did not have significant symptoms. 41(25%) participants returned a‘high’CISS score of ≥21 but only 6 (15%) of these had genuine CI. Sensitivity of the CISS to detect CI in this asymptomatic sample was 38%; specificity 77%; positive predictive value 15%; and negative predictive value 92%. The area under a receiver operating characteristic curve was 0.596 (95% CI 0.46 to 0.73). Conclusions‘Visual symptoms’are common in young adults, but often not related to any clinical defect, while true CI may be asymptomatic. This study suggests that screening for CI is not indicated

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Algorithms for computer-aided diagnosis of dementia based on structural MRI have demonstrated high performance in the literature, but are difficult to compare as different data sets and methodology were used for evaluation. In addition, it is unclear how the algorithms would perform on previously unseen data, and thus, how they would perform in clinical practice when there is no real opportunity to adapt the algorithm to the data at hand. To address these comparability, generalizability and clinical applicability issues, we organized a grand challenge that aimed to objectively compare algorithms based on a clinically representative multi-center data set. Using clinical practice as the starting point, the goal was to reproduce the clinical diagnosis. Therefore, we evaluated algorithms for multi-class classification of three diagnostic groups: patients with probable Alzheimer's disease, patients with mild cognitive impairment and healthy controls. The diagnosis based on clinical criteria was used as reference standard, as it was the best available reference despite its known limitations. For evaluation, a previously unseen test set was used consisting of 354 T1-weighted MRI scans with the diagnoses blinded. Fifteen research teams participated with a total of 29 algorithms. The algorithms were trained on a small training set (n = 30) and optionally on data from other sources (e.g., the Alzheimer's Disease Neuroimaging Initiative, the Australian Imaging Biomarkers and Lifestyle flagship study of aging). The best performing algorithm yielded an accuracy of 63.0% and an area under the receiver-operating-characteristic curve (AUC) of 78.8%. In general, the best performances were achieved using feature extraction based on voxel-based morphometry or a combination of features that included volume, cortical thickness, shape and intensity. The challenge is open for new submissions via the web-based framework: http://caddementia.grand-challenge.org.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Forecasting atmospheric blocking is one of the main problems facing medium-range weather forecasters in the extratropics. The European Centre for Medium-Range Weather Forecasts (ECMWF) Ensemble Prediction System (EPS) provides an excellent basis for medium-range forecasting as it provides a number of different possible realizations of the meteorological future. This ensemble of forecasts attempts to account for uncertainties in both the initial conditions and the model formulation. Since 18 July 2000, routine output from the EPS has included the field of potential temperature on the potential vorticity (PV) D 2 PV units (PVU) surface, the dynamical tropopause. This has enabled the objective identification of blocking using an index based on the reversal of the meridional potential-temperature gradient. A year of EPS probability forecasts of Euro-Atlantic and Pacific blocking have been produced and are assessed in this paper, concentrating on the Euro-Atlantic sector. Standard verification techniques such as Brier scores, Relative Operating Characteristic (ROC) curves and reliability diagrams are used. It is shown that Euro-Atlantic sector-blocking forecasts are skilful relative to climatology out to 10 days, and are more skilful than the deterministic control forecast at all lead times. The EPS is also more skilful than a probabilistic version of this deterministic forecast, though the difference is smaller. In addition, it is shown that the onset of a sector-blocking episode is less well predicted than its decay. As the lead time increases, the probability forecasts tend towards a model climatology with slightly less blocking than is seen in the real atmosphere. This small under-forecasting bias in the blocking forecasts is possibly related to a westerly bias in the ECMWF model. Copyright © 2003 Royal Meteorological Society

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND. To use spectra acquired by matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) from pre- and post-digital rectal examination (DRE) urine samples to search for discriminating peaks that can adequately distinguish between benign and malignant prostate conditions, and identify the peaks’ underlying biomolecules. METHODS. Twenty-five participants with prostate cancer (PCa) and 27 participants with a variety of benign prostatic conditions as confirmed by a 10-core tissue biopsy were included. Pre- and post-DRE urine samples were prepared for MALDI MS profiling using an automated clean-up procedure. Following mass spectra collection and processing, peak mass and intensity were extracted and subjected to statistical analysis to identify peaks capable of distinguishing between benign and cancer. Logistic regression was used to combine markers to create a sensitive and specific test. RESULTS. A peak at m/z 10,760 was identified as b-microseminoprotein (b-MSMB) and found to be statistically lower in urine from PCa participants using the peak’s average areas. By combining serum prostate-specific antigen (PSA) levels with MALDI MS-measured b-MSMB levels, optimum threshold values obtained from Receiver Operator characteristics curves gave an increased sensitivity of 96% at a specificity of 26%. CONCLUSIONS. These results demonstrate that with a simple sample clean-up followed by MALDI MS profiling, significant differences of MSMB abundance were found in post-DRE urine samples. In combination with PSA serum levels, obtained from a classic clinical assay led to high classification accuracy for PCa in the studied sample set. Our results need to be validated in a larger multicenter prospective randomized clinical trial.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The notions of resolution and discrimination of probability forecasts are revisited. It is argued that the common concept underlying both resolution and discrimination is the dependence (in the sense of probability theory) of forecasts and observations. More specifically, a forecast has no resolution if and only if it has no discrimination if and only if forecast and observation are stochastically independent. A statistical tests for independence is thus also a test for no resolution and, at the same time, for no discrimination. The resolution term in the decomposition of the logarithmic scoring rule, and the area under the Receiver Operating Characteristic will be investigated in this light.