91 resultados para Reactive parameters
em CentAUR: Central Archive University of Reading - UK
Resumo:
The ability to undertake repeat measurements of flow-mediated dilatation (FMD) within a short time of a previous measurement would be useful to improve accuracy or to repeat a failed initial procedure. Although standard methods report that a minimum of 10 min is required between measurements, there is no published data to support this. Thirty healthy volunteers had five FMD measurements performed within a 2-h period, separated by various time intervals (5, 15 and 30 min). In 19 volunteers, FMD was also performed as soon as the vessel had returned to its baseline diameter. There was no significant difference between any of the FMD measurements or parameters across the visits indicating that repeat measurements may be taken after a minimum of 5 min or as soon as the vessel has returned to its baseline diameter, which in some subjects may be less than 5 min.
Resumo:
It is recognised that ageing induces various changes to the human colonic microbiota. Most relevant is a reduction in bifidobacteria, which is a health-positive genus. Prebiotics, such as galacto-oligosaccharides (GOS), are dietary ingredients that selectively fortify beneficial gut microbial groups. Therefore, they have the potential to reverse the age-related decline in bifidobacteria and modulate associated health parameters. We assessed the effect of GOS mixture (Bimuno (B-GOS)) on gut microbiota, markers of immune function and metabolites in forty elderly (age 65-80 years) volunteers in a randomised, double-blind, placebo (maltodextrin)-controlled, cross-over study. The intervention periods consisted of 10 weeks with daily doses of 5·5 g/d with a 4-week washout period in between. Blood and faecal samples were collected for the analyses of faecal bacterial populations and immune and metabolic biomarkers. B-GOS consumption led to significant increases in bacteroides and bifidobacteria, the latter correlating with increased lactic acid in faecal waters. Higher IL-10, IL-8, natural killer cell activity and C-reactive protein and lower IL-1β were also observed. Administration of B-GOS to elderly volunteers may be useful in positively affecting the microbiota and some markers of immune function associated with ageing.
Resumo:
Despite the many models developed for phosphorus concentration prediction at differing spatial and temporal scales, there has been little effort to quantify uncertainty in their predictions. Model prediction uncertainty quantification is desirable, for informed decision-making in river-systems management. An uncertainty analysis of the process-based model, integrated catchment model of phosphorus (INCA-P), within the generalised likelihood uncertainty estimation (GLUE) framework is presented. The framework is applied to the Lugg catchment (1,077 km2), a River Wye tributary, on the England–Wales border. Daily discharge and monthly phosphorus (total reactive and total), for a limited number of reaches, are used to initially assess uncertainty and sensitivity of 44 model parameters, identified as being most important for discharge and phosphorus predictions. This study demonstrates that parameter homogeneity assumptions (spatial heterogeneity is treated as land use type fractional areas) can achieve higher model fits, than a previous expertly calibrated parameter set. The model is capable of reproducing the hydrology, but a threshold Nash-Sutcliffe co-efficient of determination (E or R 2) of 0.3 is not achieved when simulating observed total phosphorus (TP) data in the upland reaches or total reactive phosphorus (TRP) in any reach. Despite this, the model reproduces the general dynamics of TP and TRP, in point source dominated lower reaches. This paper discusses why this application of INCA-P fails to find any parameter sets, which simultaneously describe all observed data acceptably. The discussion focuses on uncertainty of readily available input data, and whether such process-based models should be used when there isn’t sufficient data to support the many parameters.
Resumo:
The NERC UK SOLAS-funded Reactive Halogens in the Marine Boundary Layer (RHaMBLe) programme comprised three field experiments. This manuscript presents an overview of the measurements made within the two simultaneous remote experiments conducted in the tropical North Atlantic in May and June 2007. Measurements were made from two mobile and one ground-based platforms. The heavily instrumented cruise D319 on the RRS Discovery from Lisbon, Portugal to São Vicente, Cape Verde and back to Falmouth, UK was used to characterise the spatial distribution of boundary layer components likely to play a role in reactive halogen chemistry. Measurements onboard the ARSF Dornier aircraft were used to allow the observations to be interpreted in the context of their vertical distribution and to confirm the interpretation of atmospheric structure in the vicinity of the Cape Verde islands. Long-term ground-based measurements at the Cape Verde Atmospheric Observatory (CVAO) on São Vicente were supplemented by long-term measurements of reactive halogen species and characterisation of additional trace gas and aerosol species during the intensive experimental period. This paper presents a summary of the measurements made within the RHaMBLe remote experiments and discusses them in their meteorological and chemical context as determined from these three platforms and from additional meteorological analyses. Air always arrived at the CVAO from the North East with a range of air mass origins (European, Atlantic and North American continental). Trace gases were present at stable and fairly low concentrations with the exception of a slight increase in some anthropogenic components in air of North American origin, though NOx mixing ratios during this period remained below 20 pptv. Consistency with these air mass classifications is observed in the time series of soluble gas and aerosol composition measurements, with additional identification of periods of slightly elevated dust concentrations consistent with the trajectories passing over the African continent. The CVAO is shown to be broadly representative of the wider North Atlantic marine boundary layer; measurements of NO, O3 and black carbon from the ship are consistent with a clean Northern Hemisphere marine background. Aerosol composition measurements do not indicate elevated organic material associated with clean marine air. Closer to the African coast, black carbon and NO levels start to increase, indicating greater anthropogenic influence. Lower ozone in this region is possibly associated with the increased levels of measured halocarbons, associated with the nutrient rich waters of the Mauritanian upwelling. Bromide and chloride deficits in coarse mode aerosol at both the CVAO and on D319 and the continuous abundance of inorganic gaseous halogen species at CVAO indicate significant reactive cycling of halogens. Aircraft measurements of O3 and CO show that surface measurements are representative of the entire boundary layer in the vicinity both in diurnal variability and absolute levels. Above the inversion layer similar diurnal behaviour in O3 and CO is observed at lower mixing ratios in the air that had originated from south of Cape Verde, possibly from within the ITCZ. ECMWF calculations on two days indicate very different boundary layer depths and aircraft flights over the ship replicate this, giving confidence in the calculated boundary layer depth.
Resumo:
The mortality (7 and 14 d), weight change (7 and 14 d), and metal uptake of Eisenia fetida (Savigny, 1826) kept in Pb(NO3)(2)-treated Kettering loam soil in single- and multiple-occupancy (10 earthworms) test containers were determined. The number of earthworms to dry mass (g) ratio of soil was 1:50 in both sets of test containers. Lead concentrations were in the nominal range of 0 to 10,000 mg Pb/kg soil (mg/kg hereafter). Levels of mortality at a given concentration were statistically identical between the single- and multiple-occupancy tests, except at 1,800 mg/kg, at which significantly (p less than or equal to 0.05) more mortality occurred in the multiple-occupancy tests. Death of individual earthworms in the multiple-occupancy tests did not trigger death of the other earthworms in that soil. The LC50 values (concentration statistically likely to kill 50% of the population) were identical between the multiple- and single-occupancy soils: 2,662 mg/kg (2,598-2,984, 7 d) and 2,589 mg/kg (2,251-3,013, 14 d) for the multiple-occupancy soils and 2,827 mg/kg (2,443-3,168, both 7 and 14 d) for the single-occupancy soils (values in brackets represent the 95% confidence intervals). Data were insufficient to calculate the concentration statistically likely to reduce individual earthworm mass by 50% (EC50), but after 14 d, the decrease in earthworm weight in the 1,800 and 3,000 mg/kg tests was significantly greater in the multiple- than in the single-occupancy soils. At 1,000, 1,800, and 3,000 mg/kg tests, earthworm Pb tissue concentration was significantly (p less than or equal to 0.05) greater in earthworms from the multiple-occupancy soils. The presence of earthworms increased the NH3 content of the soil; earthworm mortality increased NH3 concentrations further but not to toxic levels.
Resumo:
Bloom-forming and toxin-producing cyanobacteria remain a persistent nuisance across the world. Modelling of cyanobacteria in freshwaters is an important tool for understanding their population dynamics and predicting the location and timing of the bloom events in lakes and rivers. A new deterministic-mathematical model was developed, which simulates the growth and movement of cyanobacterial blooms in river systems. The model focuses on the mathematical description of the bloom formation, vertical migration and lateral transport of colonies within river environments by taking into account the major factors that affect the cyanobacterial bloom formation in rivers including, light, nutrients and temperature. A technique called generalised sensitivity analysis was applied to the model to identify the critical parameter uncertainties in the model and investigates the interaction between the chosen parameters of the model. The result of the analysis suggested that 8 out of 12 parameters were significant in obtaining the observed cyanobacterial behaviour in a simulation. It was found that there was a high degree of correlation between the half-saturation rate constants used in the model.
Resumo:
Laboratory determined mineral weathering rates need to be normalised to allow their extrapolation to natural systems. The principle normalisation terms used in the literature are mass, and geometric- and BET specific surface area (SSA). The purpose of this study was to determine how dissolution rates normalised to these terms vary with grain size. Different size fractions of anorthite and biotite ranging from 180-150 to 20-10 mu m were dissolved in pH 3, HCl at 25 degrees C in flow through reactors under far from equilibrium conditions. Steady state dissolution rates after 5376 h (anorthite) and 4992 h (biotite) were calculated from Si concentrations and were normalised to initial- and final- mass and geometric-, geometric edge- (biotite), and BET SSA. For anorthite, rates normalised to initial- and final-BET SSA ranged from 0.33 to 2.77 X 10(-10) mol(feldspar) m(-2) s(-1), rates normalised to initial- and final-geometric SSA ranged from 5.74 to 8.88 X 10(-10) mol(feldspar) m(-2) s(-1) and rates normalised to initial- and final-mass ranged from 0.11 to 1.65 mol(feldspar) g(-1) s(-1). For biotite, rates normalised to initial- and final-BET SSA ranged from 1.02 to 2.03 X 10(-12) mol(biotite) m(-2) s(-1), rates normalised to initial- and final-geometric SSA ranged from 3.26 to 16.21 X 10(-12) mol(biotite) m(-2) s(-1), rates normalised to initial- and final-geometric edge SSA ranged from 59.46 to 111.32 x 10(-12) mol(biotite) m(-2) s(-1) and rates normalised to initial- and final-mass ranged from 0.81 to 6.93 X 10(-12) mol(biotite) g(-1) s(-1). For all normalising terms rates varied significantly (p <= 0.05) with grain size. The normalising terms which gave least variation in dissolution rate between grain sizes for anorthite were initial BET SSA and initial- and final-geometric SSA. This is consistent with: (1) dissolution being dominated by the slower dissolving but area dominant non-etched surfaces of the grains and, (2) the walls of etch pits and other dissolution features being relatively unreactive. These steady state normalised dissolution rates are likely to be constant with time. Normalisation to final BET SSA did not give constant ratios across grain size due to a non-uniform distribution of dissolution features. After dissolution coarser grains had a greater density of dissolution features with BET-measurable but unreactive wall surface area than the finer grains. The normalising term which gave the least variation in dissolution rates between grain sizes for biotite was initial BET SSA. Initial- and final-geometric edge SSA and final BET SSA gave the next least varied rates. The basal surfaces dissolved sufficiently rapidly to influence bulk dissolution rate and prevent geometric edge SSA normalised dissolution rates showing the least variation. Simple modelling indicated that biotite grain edges dissolved 71-132 times faster than basal surfaces. In this experiment, initial BET SSA best integrated the different areas and reactivities of the edge and basal surfaces of biotite. Steady state dissolution rates are likely to vary with time as dissolution alters the ratio of edge to basal surface area. Therefore they would be more properly termed pseudo-steady state rates, only appearing constant because the time period over which they were measured (1512 h) was less than the time period over wich they would change significantly. (c) 2006 Elsevier Inc. All rights reserved.
Resumo:
Two control and eight field-contaminated, metal-polluted soils were inoculated with Eisenia fetida (Savigny, 1826). Three, 7, 14, 21, 28 and 42 days after inoculation, earthworm survival, body weight, cocoon production and hatching rate were measured. Seventeen metals were analysed in E.fetida tissue, bulk soil and soil solution. Soil organic carbon content, texture, pH and cation exchange capacity were also measured. Cocoon production and hatching rate were more sensitive to adverse conditions than survival or weight change. Soil properties other than metal concentration impacted toxicity. The most toxic soils were organic-poor (1-10 g C kg(-1)), sandy soils (c. 74% sand), with intermediate metal concentrations (e.g. 7150-13, 100 mg Ph kg(-1), 2970-53,400 mg Zn kg(-1)). Significant relationships between soil properties and the life cycle parameters were determined. The best coefficients of correlation were generally found for texture, pH, Ag, Cd, Mg, Pb, Tl, and Zn both singularly and in multivariate regressions. Studies that use metal-amended artificial soils are not useful to predict toxicity of field multi-contaminated soils. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The conceptual and parameter uncertainty of the semi-distributed INCA-N (Integrated Nutrients in Catchments-Nitrogen) model was studied using the GLUE (Generalized Likelihood Uncertainty Estimation) methodology combined with quantitative experimental knowledge, the concept known as 'soft data'. Cumulative inorganic N leaching, annual plant N uptake and annual mineralization proved to be useful soft data to constrain the parameter space. The INCA-N model was able to simulate the seasonal and inter-annual variations in the stream-water nitrate concentrations, although the lowest concentrations during the growing season were not reproduced. This suggested that there were some retention processes or losses either in peatland/wetland areas or in the river which were not included in the INCA-N model. The results of the study suggested that soft data was a way to reduce parameter equifinality, and that the calibration and testing of distributed hydrological and nutrient leaching models should be based both on runoff and/or nutrient concentration data and the qualitative knowledge of experimentalist. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The Integrated Catchments model of Phosphorus dynamics (INCA-P) was applied to the River Lugg to determine the key factors controlling delivery of phosphorus to the main channel and to quantify the relative contribution of diffuse and point sources to the in-stream phosphorus (P) load under varying hydrological conditions. The model is able to simulate the seasonal variations and inter-annual variations in the in-stream total-phosphorus concentrations. However, difficulties in simulating diffuse inputs arise due to equifinality in the model structure and parameters. The River Lugg is split into upper and lower reaches. The upper reaches are dominated by grassland and woodland, so the patterns in the stream-water total-phosphorus concentrations are typical of diffuse source inputs; application of the model leads to estimates of the relative contribution to the in-stream P load from diffuse and point sources as 9:1. In the lower reaches, which are more intensively cultivated and urbanised, the stream-water total-phosphorus concentration dynamics are influenced more by point-sources; the simulated relative diffuse/point contribution to the in-stream P load is 1: 1. The model set-up and simulations are used to identify the key source-areas of P in the catchment, the P contribution of the Lugg to the River Wye during years with contrasting precipitation inputs, and the uptake and release of P from within-reach sediment. In addition, model scenarios are run to identify the impacts of likely P reductions at sewage treatment works on the in-stream soluble-reactive P concentrations and the suitability of this as a management option is assessed for reducing eutrophication.
Resumo:
Patterns of communication and behaviour emerge within a construction project in response to a construction crisis. This paper investigates, within a grounded theory framework, the nature of these patterns, the sociological and psychological forces which shape them and their relationship with crisis management efficiency. A grounded theory is presented in four parts. The first part conceives a construction crisis as a period of social instability, arising from conflicting interest groups, seeking to exercise power in the pursuit of social structures which suit their political and economic interests. The second part sees a construction crisis as a de-sensitizing phenomenon which results in a period of behavioural instability and conflict which is self-perpetuating. The third part cites social structure as an important influence upon construction crisis management efficiency, in determining the efficiency of information flow, and the level of uncertainty between those affected. The fourth part points to the in-built defence mechanisms which construction crises have and to three managerial ironies which make construction crisis management difficult.
Resumo:
Climate change science is increasingly concerned with methods for managing and integrating sources of uncertainty from emission storylines, climate model projections, and ecosystem model parameterizations. In tropical ecosystems, regional climate projections and modeled ecosystem responses vary greatly, leading to a significant source of uncertainty in global biogeochemical accounting and possible future climate feedbacks. Here, we combine an ensemble of IPCC-AR4 climate change projections for the Amazon Basin (eight general circulation models) with alternative ecosystem parameter sets for the dynamic global vegetation model, LPJmL. We evaluate LPJmL simulations of carbon stocks and fluxes against flux tower and aboveground biomass datasets for individual sites and the entire basin. Variability in LPJmL model sensitivity to future climate change is primarily related to light and water limitations through biochemical and water-balance-related parameters. Temperature-dependent parameters related to plant respiration and photosynthesis appear to be less important than vegetation dynamics (and their parameters) for determining the magnitude of ecosystem response to climate change. Variance partitioning approaches reveal that relationships between uncertainty from ecosystem dynamics and climate projections are dependent on geographic location and the targeted ecosystem process. Parameter uncertainty from the LPJmL model does not affect the trajectory of ecosystem response for a given climate change scenario and the primary source of uncertainty for Amazon 'dieback' results from the uncertainty among climate projections. Our approach for describing uncertainty is applicable for informing and prioritizing policy options related to mitigation and adaptation where long-term investments are required.
Resumo:
The objective was to determine the concentration of total selenium (Se) and the proportion of total Se comprised as selenomethionine (SeMet) and selenocysteine (SeCys), as well as meat quality in terms of oxidative stability in post mortem tissues of lambs offered diets with an increasing dose rate of selenized enriched yeast (SY), or sodium selenite (SS). Fifty lambs were offered, for a period of 112 d, a total mixed ration which had either been supplemented with SY (0, 0.11, 0.21 or 0.31 mg/kg DM to give total Se contents of 0.19, 0.3, 0.4 and 0.5 mg Se/kg DM for treatments T1, T2, T3 and T4, respectively) or SS (0.11 mg/kg DM to give 0.3 mg Se/kg DM total Se [T5]). At enrolment and at 28, 56, 84 and 112 d following enrolment, blood samples were taken for Se and Se species determination, as well as glutathione peroxidase (GSH-Px) activity. At the end of the study lambs were euthanased and samples of heart, liver, kidney, and skeletal muscle were retained for Se and Se species determination. Tissue GSH-Px activity and thiobarbituric acid reactive substances (TBARS) were determined in Longissimus Thoracis. The incorporation into the diet of ascending concentrations of Se as SY increased whole blood total Se and the proportion of total Se comprised as SeMet, and erythrocyte GSH-Px activity. Comparable doses of SS supplementation did not result in significant differences between these parameters. With the exception of kidney tissue, all other tissues showed a dose dependant response to increasing concentrations of dietary SY, such that total Se and SeMet increased. Selenium content of Psoas Major was higher in animals fed SY when compared to a similar dose of SS, indicating improvements in Se availability and retention. There were no significant treatment effects on meat quality assessments GHS-Px and TBARS, reflecting the lack of difference in the proportion of total Se that was comprised as SeCys. However, oxidative stability improved marginally with ascending tissue Se content, providing an indication of a linear dose response whereby TBARS improved with ascending SY inclusion.