25 resultados para Ray-absorption-spectroscopy

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new online method to analyse water isotopes of speleothem fluid inclusions using a wavelength scanned cavity ring down spectroscopy (WS-CRDS) instrument is presented. This novel technique allows us simultaneously to measure hydrogen and oxygen isotopes for a released aliquot of water. To do so, we designed a new simple line that allows the online water extraction and isotope analysis of speleothem samples. The specificity of the method lies in the fact that fluid inclusions release is made on a standard water background, which mainly improves the δ D robustness. To saturate the line, a peristaltic pump continuously injects standard water into the line that is permanently heated to 140 °C and flushed with dry nitrogen gas. This permits instantaneous and complete vaporisation of the standard water, resulting in an artificial water background with well-known δ D and δ18O values. The speleothem sample is placed in a copper tube, attached to the line, and after system stabilisation it is crushed using a simple hydraulic device to liberate speleothem fluid inclusions water. The released water is carried by the nitrogen/standard water gas stream directly to a Picarro L1102-i for isotope determination. To test the accuracy and reproducibility of the line and to measure standard water during speleothem measurements, a syringe injection unit was added to the line. Peak evaluation is done similarly as in gas chromatography to obtain &delta D; and δ18O isotopic compositions of measured water aliquots. Precision is better than 1.5 ‰ for δ D and 0.4 ‰ for δ18O for water measurements for an extended range (−210 to 0 ‰ for δ D and −27 to 0 ‰ for δ18O) primarily dependent on the amount of water released from speleothem fluid inclusions and secondarily on the isotopic composition of the sample. The results show that WS-CRDS technology is suitable for speleothem fluid inclusion measurements and gives results that are comparable to the isotope ratio mass spectrometry (IRMS) technique.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Near ambient-pressure X-ray photoelectron spectroscopy (NAP-XPS) is used to study the chemical state of methane oxidation catalysts in-situ. Al2O3{supported Pd catalysts are prepared with different particle sizes ranging from 4 nm to 10 nm. These catalysts were exposed to conditions similar to those used in the partial oxidation of methane (POM) to syn-gas and simultaneously monitored by NAP-XPS and mass spectrometry. NAP-XPS data show changes in the oxidation state of the palladium as the temperature in- creases, from metallic Pd0 to PdO, and back to Pd0. Mass spectrometry shows an increase in CO production whilst the Pd is in the oxide phase, and the metal is reduced back under presence of newly formed H2. A particle size effect is observed, such that CH4 conversion starts at lower temperatures with larger sized particles from 6 nm to 10 nm. We find that all nanoparticles begin CH4 conversion at lower temperatures than polycrystalline Pd foil.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Predicting metal bioaccumulation and toxicity in soil organisms is complicated by site-specific biotic and abiotic parameters. In this study we exploited tissue fractionation and digestion techniques, combined with X-ray absorption spectroscopy (XAS), to investigate the whole-body and subcellular distributions, ligand affinities, and coordination chemistry of accumulated Pb and Zn in field populations of the epigeic earthworm Lumbricus rubellus inhabiting three contrasting metalliferous and two unpolluted soils. Our main findings were (i) earthworms were resident in soils with concentrations of Pb and Zn ranging from 1200 to 27 000 mg kg(-1) and 200 to 34 000 mg kg(-1), respectively; (ii) Pb and Zn primarily accumulated in the posterior alimentary canal in nonsoluble subcellular fractions of earthworms; (iii) site-specific differences in the tissue and subcellular partitioning profiles of populations were observed, with earthworms from a calcareous site partitioning proportionally more Pb to their anterior body segments and Zn to the chloragosome-rich subcellular fraction than their acidic-soil inhabiting counterparts; (iv) XAS indicated that the interpopulation differences in metal partitioning between organs were not accompanied by qualitative differences in ligand-binding speciation, because crystalline phosphate-containing pyromorphite was a predominant chemical species in the whole-worm tissues of all mine soil residents. Differences in metal (Pb, Zn) partitioning at both organ and cellular levels displayed by field populations with protracted histories of metal exposures may reflect their innate ecophysiological responses to essential edaphic variables, such as Ca2+ status. These observations are highly significant in the challenging exercise of interpreting holistic biomarker data delivered by "omic" technologies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of soil organisms on metal mobility and bioavailability in soils is not currently fully understood. We conducted experiments to determine whether calcium carbonate granules secreted by the earthworm Lumbricus terrestris could incorporate and immobilise lead in lead- and calcium- amended artificial soils. Soil lead concentrations were up to 2000 mg kg-1 and lead:calcium ratios by mass were 0.5-8. Average granule production rates of 0.39 + 0.04 mgcalcite earthworm-1 day-1 did not vary with soil lead concentration. The lead:calcium ratio in granules increased significantly with that of the soil (r2 = 0.81, p = 0.015) with lead concentrations in granules reaching 1577 mg kg-1. X-ray diffraction detected calcite and aragonite in the granules with indications that lead was incorporated into the calcite at the surface of the granules. In addition to the presence of calcite and aragonite X-ray absorption spectroscopy indicated that lead was present in the granules mainly as complexes sorbed to the surface but with traces of lead-bearing calcite and cerussite. The impact that lead-incorporation into earthworm calcite granules has on lead mobility at lead-contaminated sites will depend on the fraction of total soil lead that would be otherwise mobile.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The coadsorption of water with organic molecules under near-ambient pressure and temperature conditions opens up new reaction pathways on model catalyst surfaces that are not accessible in conventional ultrahigh-vacuum surfacescience experiments. The surface chemistry of glycine and alanine at the water-exposed Cu{110} interface was studied in situ using ambient-pressure photoemission and X-ray absorption spectroscopy techniques. At water pressures above 10-5 Torr a significant pressure-dependent decrease in the temperature for dissociative desorption was observed for both amino acids, accompanied by the appearance of a newCN intermediate, which is not observed for lower pressures. The most likely reaction mechanisms involve dehydrogenation induced by O and/or OH surface species resulting from the dissociative adsorption of water. The linear relationship between the inverse decomposition temperature and the logarithm of water pressure enables determination of the activation energy for the surface reaction, between 213 and 232 kJ/mol, and a prediction of the decomposition temperature at the solidliquid interface by extrapolating toward the equilibrium vapor pressure. Such experiments near the equilibrium vapor pressure provide important information about elementary surface processes at the solidliquid interface, which can be retrieved neither under ultrahigh vacuum conditions nor from interfaces immersed in a solution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The phosphine-stabilised gold cluster [Au6(Ph2P-o-tolyl)6](NO3)2 is converted into an active nanocatalyst for the oxidation of benzyl alcohol through low-temperature peroxide-assisted removal of the phosphines, avoiding the high-temperature calcination process. The process was monitored using in-situ X-ray absorption spectroscopy, which revealed that after a certain period of the reaction with tertiary butyl hydrogen peroxide, the phosphine ligands are removed to form nanoparticles of gold which matches with the induction period seen in the catalytic reaction. Density functional theory calculations show that the energies required to remove the ligands from the [Au6Ln]2+ increase significantly with successive removal steps, suggesting that the process does not occur at once but sequentially. The calculations also reveal that ligand removal is accompanied by dramatic re-arrangements in the topology of the cluster core.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development of protocols for the identification of metal phosphates in phosphate-treated, metal-contaminated soils is a necessary yet problematical step in the validation of remediation schemes involving immobilization of metals as phosphate phases. The potential for Raman spectroscopy to be applied to the identification of these phosphates in soils has yet to be fully explored. With this in mind, a range of synthetic mixed-metal hydroxylapatites has been characterized and added to soils at known concentrations for analysis using both bulk X-ray powder diffraction (XRD) and Raman spectroscopy. Mixed-metal hydroxylapatites in the binary series Ca-Cd, Ca-Pb, Ca-Sr and Cd-Pb synthesized in the presence of acetate and carbonate ions, were characterized using a range of analytical techniques including XRD, analytical scanning electron microscopy (SEM), infrared spectroscopy (IR), inductively coupled plasma-atomic emission spectrometry (ICP-AES) and Raman spectroscopy. Only the Ca-Cd series displays complete solid solution, although under the synthesis conditions of this study the Cd-5(PO4)(3)OH end member could not be synthesized as a pure phase. Within the Ca-Cd series the cell parameters, IR active modes and Raman active bands vary linearly as a function of Cd content. X-ray diffraction and extended X-ray absorption fine structure spectroscopy (EXAFS) suggest that the Cd is distributed across both the Ca(1) and Ca(2) sites, even at low Cd concentrations. In order to explore the likely detection limits for mixed-metal phosphates in soils for XRD and Raman spectroscopy, soils doped with mixed-metal hydroxylapatites at concentrations of 5, 1 and 0.5 wt.% were then studied. X-ray diffraction could not confirm unambiguously the presence or identity of mixed-metal phosphates in soils at concentrations below 5 wt.%. Raman spectroscopy proved a far more sensitive method for the identification of mixed-metal hydroxylapatites in soils, which could positively identify the presence of such phases in soils at all the dopant concentrations used in this study. Moreover, Raman spectroscopy could also provide an accurate assessment of the degree of chemical substitution in the hydroxylapatites even when present in soils at concentrations as low as 0.1%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Enantioselective heterogeneous hydrogenation of Cdouble bond; length as m-dashO bonds is of great potential importance in the synthesis of chirally pure products for the pharmaceutical and fine chemical industries. One of the most widely studied examples of such a reaction is the hydrogenation of β-ketoesters and β-diketoesters over Ni-based catalysts in the presence of a chiral modifier. Here we use scanning transmission X-ray microscopy combined with near-edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS) to investigate the adsorption of the chiral modifier, namely (R,R)-tartaric acid, onto individual nickel nanoparticles. The C K-edge spectra strongly suggest that tartaric acid deposited onto the nanoparticle surfaces from aqueous solutions undergoes a keto-enol tautomerisation. Furthermore, we are able to interrogate the Ni L2,3-edge resonances of individual metal nanoparticles which, combined with X-ray diffraction (XRD) patterns showed them to consist of a pure nickel phase rather than the more thermodynamically stable bulk nickel oxide. Importantly, there appears to be no “particle size effect” on the adsorption mode of the tartaric acid in the particle size range ~ 90–~ 300 nm.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We have investigated the adsorption and thermal decomposition of copper hexafluoroacetylacetonate (Cu-11(hfaC)(2)) on single crystal rutile TiO2(110). Low energy electron diffraction shows that room temperature saturation coverage of the Cu-II(hfac)(2) adsorbate forms an ordered (2 x 1) over-layer. X-ray and ultra-violet photoemission spectroscopy of the saturated surface were recorded as the sample was annealed in a sequential manner to reveal decomposition pathways. The results show that the molecule dissociatively adsorbs by detachment of one of the two ligands to form hfac and Cu-1(hfac) which chemisorb to the substrate at 298 K. These ligands only begin to decompose once the surface temperature exceeds 473 K where Cu core level shifts indicate metallisation. This reduction from Cu(I) to Cu(0) takes place in the absence of an external reducing agent and without disproportionation and is accompanied by the onset of decomposition of the hfac ligands. Finally, C K-edge near edge X-ray absorption fine structure experiments indicate that both the ligands adsorb aligned in the < 001 > direction and we propose a model in which the hfac ligands adsorb on the 5-fold coordinated Ti atoms and the Cu-1(hfac) moiety attaches to the bridging O atoms in a square planar geometry. The calculated tilt angle for these combined geometries is approximately 10 degrees to the surface normal.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

When considering contaminated site ecology and ecological risk assessment a key question is whether organisms that appear unaffected by accumulation of contaminants are tolerant or resistant to those contaminants. A population of Dendrodrilus rubidus Savigny earthworms from the Coniston Copper Mines, an area of former Cu mining, exhibit increased tolerance and accumulation of Cu relative to a nearby non-Cu exposed population. Distribution of total Cu between different body parts (posterior, anterior, body wall) of the two populations was determined after a 14 day exposure to 250 mg Cu kg(-1) in Cu-amended soil. Cu concentrations were greater in Coniston earthworms but relative proportions of Cu in different body parts were the same between populations. Cu speciation was determined using extended X-ray absorption fine structure spectroscopy (EXAFS). Cu was coordinated to 0 atoms in the exposure soil but to S atoms in the earthworms. There was no difference in this speciation between the different earthworm populations. In another experiment earthworms were exposed to a range of Cu concentrations (200-700 mg Cu kg(-1)). Subcellular partitioning of accumulated Cu was determined. Coniston earthworms accumulated more Cu but relative proportions of Cu in the different fractions (cytosol > granular > tissue fragments, cell membranes, and intact cells) were the same between populations. Results suggest that Coniston D. rubidus are able to survive in the Cu-rich Coniston Copper Mines soil through enlargement of the same Cu storage reservoirs that exist in a nearby non-Cu exposed population.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Temperature-programmed reaction measurements supported by scanning tunneling microscopy have shown that phenylacetylene and iodobenzene react on smooth Au(111) under vacuum conditions to yield biphenyl and diphenyldiacetylene, the result of homocoupling of the reactant molecules. They also produce diphenylacetylene, the result of Sonogashira cross-coupling, prototypical of a class of reactions that are of paramount importance in synthetic organic chemistry and whose mechanism remains controversial. Roughened Au(111) is completely inert toward all three reactions, indicating that the availability of crystallographically well-defined adsorption sites is crucially important. High-resolution X-ray photoelectron spectroscopy and near-edge X-ray absorption fine structure spectroscopy show that the reactants are initially present as intact, essentially flat-lying molecules and that the temperature threshold for Sonogashira coupling coincides with that for C−I bond scission in the iodobenzene reactant. The fractional-order kinetics and low temperature associated with desorption of the Sonogashira product suggest that the reaction occurs at the boundaries of islands of adsorbed reactants and that its appearance in the gas phase is rate-limited by the surface reaction. These findings demonstrate unambiguously and for the first time that this heterogeneous cross-coupling chemistry is an intrinsic property of extended, metallic pure gold surfaces: no other species, including solvent molecules, basic or charged (ionic) species are necessary to mediate the process.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The nematode Caenorhabditis elegans expresses two metallothioneins (MTs), CeMT-1 and CeMT-2, that are believed to be key players in the protection against metal toxicity. In this study, both isoforms were expressed in vitro in the presence of either Zn(II) or Cd(II). Metal binding stoichiometries and affinities were determined by ESI-MS and NMR, respectively. Both isoforms had equal zinc binding ability, but differed in their cadmium binding behaviour, with higher affinity found for CeMT-2. In addition, wild-type C. elegans, single MT knockouts and a double MT knockout allele were exposed to zinc (340 μm) or cadmium (25 μm) to investigate effects in vivo. Zinc levels were significantly increased in all knockout strains, but were most pronounced in the CeMT-1 knockout, mtl-1 (tm1770), while cadmium accumulation was highest in the CeMT-2 knockout, mtl-2 (gk125) and the double knockout mtl-1;mtl-2 (zs1). In addition, metal speciation was assessed by X-ray absorption fine-structure spectroscopy. This showed that O-donating, probably phosphate-rich, ligands play a dominant role in maintaining the physiological concentration of zinc, independently of metallothionein status. In contrast, cadmium was shown to coordinate with thiol groups, and the cadmium speciation of the wild-type and the CeMT-2 knockout strain was distinctly different to the CeMT-1 and double knockouts. Taken together, and supported by a simple model calculation, these findings show for the first time that the two MT isoforms have differential affinities towards Cd(II) and Zn(II) at a cellular level, and this is reflected at the protein level. This suggests that the two MT isoforms have distinct in vivo roles.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The adsorption of alanine on Cu {110} was studied by a combination of near edge X-ray absorption fine structure (NEXAFS) spectroscopy, X-ray photoelectron spectroscopy (XPS) and density functional theory (DFT). Large chemical shifts in the C 1s, N 1s, and O 1s XP spectra were found between the alanine multilayer and the chemisorbed and pseudo-(3 x 2) alaninate layers. From C, N, and O K-shell NEXAFS spectra the tilt angles of the carboxylate group (approximate to 26 degrees in plane with respect to [1 (1) over bar0] and approximate to 45 degrees out of plane) and the C-N bond angle with respect to [1 (1) over bar0] could be determined for the pseudo-(3 x 2) overlayer. Using this information three adsorption geometries could be eliminated from five p(3 x 2) structures which lead to almost identical heats of adsorption in the DFT calculations between 1.40 and 1.47 eV/molecule. Due to the small energy difference between the remaining two structures it is not unlikely that these coexist on the surface at room temperature. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The adsorption of L-CySteine and L-methionine amino acids on a chiral Cu{5 3 1} surface was investigated with high resolution X-ray photoelectron spectroscopy (XPS) and carbon K-edge near edge X-ray absorption fine structure (NEXAFS) Spectroscopy using synchrotron radiation. XPS shows that at 300 K L-cysteine adsorbs through two oxygen, a nitrogen and a sulfur atom, in a four point 'quadrangular footprint', whereas L-methionine adsorbs through only two oxygen and a nitrogen atom in a 'triangular footprint'. NEWS was used to clarify the adsorption geometry of both molecules, which suggests a binding orientation to the top layer and second layer atoms in two different orientations associated with adsorption sites on {1 1 0} and {3 1 1} microfacets; of the Cu{5 3 1} surface. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Enantio-specific interactions on intrinsically chiral or chirally modified surfaces can be identified experimentally via comparison of the adsorption geometries of similar nonchiral and chiral molecules. Information about the effects of substrate-related and in interactions on the adsorption geometry of glycine, the only natural nonchiral amino acid, is therefore important for identifying enantio-specific interactions of larger chiral amino acids. We have studied the long- and short-range adsorption geometry and bonding properties of glycine on the intrinsically chiral Cu{531} surface with low-energy electron diffraction, near-edge X-ray absorption One structure spectroscopy, X-ray photoelectron spectroscopy, and temperature-programmed desorption. For coverages between 0.15 and 0.33 ML (saturated chemisorbed layer) and temperatures between 300 and 430 K, glycine molecules adsorb in two different azimuthal orientations, which are associated with adsorption sites on the {110} and {311} microfacets of Cu{531}. Both types of adsorption sites allow a triangular footprint with surface bonds through the two oxygen atoms and the nitrogen atom. The occupation of the two adsorption sites is equal for all coverages, which can be explained by pair formation due to similar site-specific adsorption energies and the possibility of forming hydrogen bonds between molecules on adjacent {110} and {311} sites. This is not the ease for alanine and points toward higher site specificity in the case of alanine, which is eventually responsible for the enantiomeric differences observed for the alanine system.