138 resultados para Random parameter Logit Model
em CentAUR: Central Archive University of Reading - UK
Resumo:
Using mixed logit models to analyse choice data is common but requires ex ante specification of the functional forms of preference distributions. We make the case for greater use of bounded functional forms and propose the use of the Marginal Likelihood, calculated using Bayesian techniques, as a single measure of model performance across non nested mixed logit specifications. Using this measure leads to very different rankings of model specifications compared to alternative rule of thumb measures. The approach is illustrated using data from a choice experiment regarding GM food types which provides insights regarding the recent WTO dispute between the EU and the US, Canada and Argentina and whether labelling and trade regimes should be based on the production process or product composition.
Resumo:
An extensive off-line evaluation of the Noah/Single Layer Urban Canopy Model (Noah/SLUCM) urban land-surface model is presented using data from 15 sites to assess (1) the ability of the scheme to reproduce the surface energy balance observed in a range of urban environments, including seasonal changes, and (2) the impact of increasing complexity of input parameter information. Model performance is found to be most dependent on representation of vegetated surface area cover; refinement of other parameter values leads to smaller improvements. Model biases in net all-wave radiation and trade-offs between turbulent heat fluxes are highlighted using an optimization algorithm. Here we use the Urban Zones to characterize Energy partitioning (UZE) as the basis to assign default SLUCM parameter values. A methodology (FRAISE) to assign sites (or areas) to one of these categories based on surface characteristics is evaluated. Using three urban sites from the Basel Urban Boundary Layer Experiment (BUBBLE) dataset, an independent evaluation of the model performance with the parameter values representative of each class is performed. The scheme copes well with both seasonal changes in the surface characteristics and intra-urban heterogeneities in energy flux partitioning, with RMSE performance comparable to similar state-of-the-art models for all fluxes, sites and seasons. The potential of the methodology for high-resolution atmospheric modelling application using the Weather Research and Forecasting (WRF) model is highlighted. This analysis supports the recommendations that (1) three classes are appropriate to characterize the urban environment, and (2) that the parameter values identified should be adopted as default values in WRF.
Resumo:
The Plant–Craig stochastic convection parameterization (version 2.0) is implemented in the Met Office Regional Ensemble Prediction System (MOGREPS-R) and is assessed in comparison with the standard convection scheme with a simple stochastic scheme only, from random parameter variation. A set of 34 ensemble forecasts, each with 24 members, is considered, over the month of July 2009. Deterministic and probabilistic measures of the precipitation forecasts are assessed. The Plant–Craig parameterization is found to improve probabilistic forecast measures, particularly the results for lower precipitation thresholds. The impact on deterministic forecasts at the grid scale is neutral, although the Plant–Craig scheme does deliver improvements when forecasts are made over larger areas. The improvements found are greater in conditions of relatively weak synoptic forcing, for which convective precipitation is likely to be less predictable.
Resumo:
In this paper, a fuzzy Markov random field (FMRF) model is used to segment land-objects into free, grass, building, and road regions by fusing remotely, sensed LIDAR data and co-registered color bands, i.e. scanned aerial color (RGB) photo and near infra-red (NIR) photo. An FMRF model is defined as a Markov random field (MRF) model in a fuzzy domain. Three optimization algorithms in the FMRF model, i.e. Lagrange multiplier (LM), iterated conditional mode (ICM), and simulated annealing (SA), are compared with respect to the computational cost and segmentation accuracy. The results have shown that the FMRF model-based ICM algorithm balances the computational cost and segmentation accuracy in land-cover segmentation from LIDAR data and co-registered bands.
Resumo:
We introduce a modified conditional logit model that takes account of uncertainty associated with mis-reporting in revealed preference experiments estimating willingness-to-pay (WTP). Like Hausman et al. [Journal of Econometrics (1988) Vol. 87, pp. 239-269], our model captures the extent and direction of uncertainty by respondents. Using a Bayesian methodology, we apply our model to a choice modelling (CM) data set examining UK consumer preferences for non-pesticide food. We compare the results of our model with the Hausman model. WTP estimates are produced for different groups of consumers and we find that modified estimates of WTP, that take account of mis-reporting, are substantially revised downwards. We find a significant proportion of respondents mis-reporting in favour of the non-pesticide option. Finally, with this data set, Bayes factors suggest that our model is preferred to the Hausman model.
Resumo:
The likelihood for the Logit model is modified, so as to take account of uncertainty associated with mis-reporting in stated preference experiments estimating willingness to pay (WTP). Monte Carlo results demonstrate the bias imparted to estimates where there is mis-reporting. The approach is applied to a data set examining consumer preferences for food produced employing a nonpesticide technology. Our modified approach leads to WTP that are substantially downwardly revised.
Resumo:
The resilience of family farming is an important feature of the structure of the farming industry in many countries, due largely to the 'smooth' succession of farms from one generation to the next. The stability of this structure is now threatened by the widening gap between the income expected from farming when compared with non-farming occupations in an economy like Ireland, operating at almost full employment. Nominated farm heirs are increasingly unlikely to choose full-time farming as their preferred occupation. To identify the factors that affect this occupational choice, a multinomial logit model is developed and applied to Irish data to examine the farm, economic and personal characteristics that influence a nominated heir's decision to enter farming as opposed to some non-farming occupation. The results show a significant negative relationship between higher education and the choice of full-time farming as an occupation. The interdependence between education and occupational choices is further explored using a bivariate probit model. The main findings are: the occupational choice and the decision to continue with higher education are made jointly; the nominated heirs on more profitable farms are less likely to pursue tertiary education and therefore more likely to enter full-time farming. The model developed is sufficiently general for studying the phenomenon of succession on farms.
Resumo:
Airborne LIght Detection And Ranging (LIDAR) provides accurate height information for objects on the earth, which makes LIDAR become more and more popular in terrain and land surveying. In particular, LIDAR data offer vital and significant features for land-cover classification which is an important task in many application domains. In this paper, an unsupervised approach based on an improved fuzzy Markov random field (FMRF) model is developed, by which the LIDAR data, its co-registered images acquired by optical sensors, i.e. aerial color image and near infrared image, and other derived features are fused effectively to improve the ability of the LIDAR system for the accurate land-cover classification. In the proposed FMRF model-based approach, the spatial contextual information is applied by modeling the image as a Markov random field (MRF), with which the fuzzy logic is introduced simultaneously to reduce the errors caused by the hard classification. Moreover, a Lagrange-Multiplier (LM) algorithm is employed to calculate a maximum A posteriori (MAP) estimate for the classification. The experimental results have proved that fusing the height data and optical images is particularly suited for the land-cover classification. The proposed approach works very well for the classification from airborne LIDAR data fused with its coregistered optical images and the average accuracy is improved to 88.9%.
Resumo:
This study investigates whether commercial offices designed by signature architects in the United States achieve rental premiums compared to commercial offices designed by nonsignature architects. Focusing on buildings designed by winners of the Prizker Prize and the Gold Medal awarded by the American Institute of Architects, we create a sample of commercial office buildings designed by signature architects drawing on CoStar's national database. We use a combination of hedonic regression model and a logit model to estimate the various rent determinants. While the first stage measures the typical rental price differential above the typical building in a particular sub-market over a specific timeframe, the second stage identifies a potential price differential over a set of buildings closely matched on important characteristics (such as age, size, location etc.). We find that in both stages offices design by signature architects exhibit a premium. However these results are preliminary. The premium could be indeed an effect of the name of the architect, but others factors such as micro-market conditions might be the cause. Further tests are needed to confirm the validity of our results.
Resumo:
Attribute non-attendance in choice experiments affects WTP estimates and therefore the validity of the method. A recent strand of literature uses attenuated estimates of marginal utilities of ignored attributes. Following this approach, we propose a generalisation of the mixed logit model whereby the distribution of marginal utility coefficients of a stated non-attender has a potentially lower mean and lower variance than those of a stated attender. Model comparison shows that our shrinkage approach fits the data better and produces more reliable WTP estimates. We further find that while reliability of stated attribute non-attendance increases in successive choice experiments, it does not increase when respondents report having ignored the same attribute twice.
Resumo:
Airborne lidar provides accurate height information of objects on the earth and has been recognized as a reliable and accurate surveying tool in many applications. In particular, lidar data offer vital and significant features for urban land-cover classification, which is an important task in urban land-use studies. In this article, we present an effective approach in which lidar data fused with its co-registered images (i.e. aerial colour images containing red, green and blue (RGB) bands and near-infrared (NIR) images) and other derived features are used effectively for accurate urban land-cover classification. The proposed approach begins with an initial classification performed by the Dempster–Shafer theory of evidence with a specifically designed basic probability assignment function. It outputs two results, i.e. the initial classification and pseudo-training samples, which are selected automatically according to the combined probability masses. Second, a support vector machine (SVM)-based probability estimator is adopted to compute the class conditional probability (CCP) for each pixel from the pseudo-training samples. Finally, a Markov random field (MRF) model is established to combine spatial contextual information into the classification. In this stage, the initial classification result and the CCP are exploited. An efficient belief propagation (EBP) algorithm is developed to search for the global minimum-energy solution for the maximum a posteriori (MAP)-MRF framework in which three techniques are developed to speed up the standard belief propagation (BP) algorithm. Lidar and its co-registered data acquired by Toposys Falcon II are used in performance tests. The experimental results prove that fusing the height data and optical images is particularly suited for urban land-cover classification. There is no training sample needed in the proposed approach, and the computational cost is relatively low. An average classification accuracy of 93.63% is achieved.
Resumo:
As climate changes, temperatures will play an increasing role in determining crop yield. Both climate model error and lack of constrained physiological thresholds limit the predictability of yield. We used a perturbed-parameter climate model ensemble with two methods of bias-correction as input to a regional-scale wheat simulation model over India to examine future yields. This model configuration accounted for uncertainty in climate, planting date, optimization, temperature-induced changes in development rate and reproduction. It also accounts for lethal temperatures, which have been somewhat neglected to date. Using uncertainty decomposition, we found that fractional uncertainty due to temperature-driven processes in the crop model was on average larger than climate model uncertainty (0.56 versus 0.44), and that the crop model uncertainty is dominated by crop development. Simulations with the raw compared to the bias-corrected climate data did not agree on the impact on future wheat yield, nor its geographical distribution. However the method of bias-correction was not an important source of uncertainty. We conclude that bias-correction of climate model data and improved constraints on especially crop development are critical for robust impact predictions.
Resumo:
Using data on 5,102 subsidiaries established in the period 1991–1999, we examine the location choice of multinational firms of different nationalities in 47 regions of five EU countries. In particular we estimate a nested logit model and find that European multinationals consider regions across different countries as relatively closer substitutes than regions within national borders. This is consistent with the hypothesis that European regions compete to attract foreign direct investments relatively more across than within countries. However, in line with previous studies, we also find that national boundaries still play some role in choices made by non-European multinationals.
Resumo:
Using data on 5509 foreign subsidiaries established in 50 regions of 8 EU countries over the period 1991–1999, we estimate a mixed logit model of the location choice of multinational firms in Europe. In particular, we focus on the role of EU Cohesion Policy in attracting foreign investors from both within and outside Europe. We find that, after controlling for the role of agglomeration economies as well as a number of other regional and country characteristics and allowing for a very flexible correlation pattern among choices, Structural and Cohesion funds allocated by the EU to laggard regions have indeed contributed to attracting multinationals. These policies as well as other determinants play a different role in the case of European investors as opposed to non-European ones.