33 resultados para Radon mitigation
em CentAUR: Central Archive University of Reading - UK
Resumo:
Intensive cultivation of fen peat soils (Eutric Histosols) for agricultural purposes, started in Europe about 250 years ago, resulting in decreased soil fertility, increased oxidation of peat and corresponding CO2-emissions to the atmosphere, nutrient transfer to aquatic ecosystems and losses in the total area of the former native wetlands. To prevent these negative environmental effects set-aside programs and rewetting measures were promoted in recent years. Literature results and practical experiences showed that large scale rewetting of intensively used agricultural Histosols may result in the mobilisation of phosphorus (P), its transport to adjacent surface waters and an accelerated eutrophication risk. The paper summarises results from an international European Community sponsored research project and demonstrates how results obtained at different scales and from different scientific disciplines were compiled to derive a strategy to carry out rewetting measures. A decision support system (DSS) for a hydrologically sensitive area in the Droemling catchment in north-eastern Germany was developed and is presented as a tool to regulate rewetting in order to control P release. It is demonstrated that additional laboratory experiments to identify essential processes of P release during rewetting and the site-specific management of the water table, the involvement of specific knowledge and experience of the stakeholders are necessary to develop an applicable DSS. The presented DSS is practically used to prevent freshwater resources from diffuse P pollution.
Resumo:
Sediment and P inputs to freshwaters from agriculture are a major problem in the United Kingdom (UK). This study investigated mitigation options for diffuse pollution losses from arable land. Field trials were undertaken at the hillslope scale over three winters at three UK sites with silt (Oxyaquic Hapludalf), sand (Udic Haplustept), and clay (Typic Haplaquept) soils. None of the mitigation treatments was effective in every year trialled, but each showed overall average reductions in losses. Over five site years, breaking up the compaction in tramlines (tractor wheel tracks) using a tine reduced losses of sediment and P to losses similar to those observed from areas without tramlines, with an average reduction in P loss of 1.06 kg TP ha(-1) Compared to traditional plowing, TP losses under minimum tillage were reduced by 0.30 kg TT ha(-1) over five site years, TP losses under contour cultivation were reduced by 0.30 kg TP ha(-1) over two site years, and TP losses using in-field barriers were reduced by 0.24 kg TP ha(-1) over two site years. In one site year, reductions in losses due to crop residue incorporation were nor significant. Each of the mitigation options trialled. is associated with a small cost at the farm-scale of up to 5 pound ha(-1), or with cost savings. The results indicate that each of the treatments his the potential to be a cost-effective mitigation option, but that tramline management is the most promising treatment, because tramlines dominate sediment and P transfer in surface runoff from arable hillslopes.
Resumo:
Objective: To determine the risk of lung cancer associated with exposure at home to the radioactive disintegration products of naturally Occurring radon gas. Design: Collaborative analysis of individual data from 13 case-control studies of residential radon and lung cancer. Setting Nine European countries. Subjects 7148 cases Of lung cancer and 14 208 controls. Main outcome measures: Relative risks of lung cancer and radon gas concentrations in homes inhabited during the previous 5-34 years measured in becquerels (radon disintegrations per second) per cubic incite (Bq/m(3)) Of household air. Results: The mean measured radon concentration in homes of people in tire control group was 97 Bq/m(3), with 11% measuring > 200 and 4% measuring > 400 Bq/m(3). For cases of lung cancer the mean concentration was 104 Bq/m(3). The risk of lung cancer increased by 8.4% (95% confidence interval 3.0% to 15.8%) per 100 Bq/m(3) increase in measured radon (P = 0.0007). This corresponds to an increase of 16% (5% to 31%) per 100 Bq/m(3) increase in usual radon-that is, after correction for the dilution caused by random uncertainties in measuring radon concentrations. The dose-response relation seemed to be linear with no threshold and remained significant (P=0.04) in analyses limited to individuals from homes with measured radon < 200 Bq/m(3). The proportionate excess risk did not differ significantly with study, age, sex, or smoking. In the absence of other causes of death, the absolute risks of lung cancer by age 75 years at usual radon concentrations of 0, 100, and 400 Bq/m(3) would be about 0.4%, 0.5%, and 0.7%, respectively, for lifelong non-smokers, and about 25 times greater (10%, 12%, and 16%) for cigarette smokers. Conclusions: Collectively, though not separately, these studies show appreciable hazards from residential radon, particularly for smokers and recent ex-smokers, and indicate that it is responsible for about 2% of all deaths from cancer in Europe.
Resumo:
With the increasing production and consumption of potato and its products, glycoalkaloid (GA) formation and toxicity are likely to become an important focus for food safety researchers and public health agencies. Not only the presence of GA, particularly in the form of a-solanine and a-chaconine, but also the changes occurring as a result of various post-harvest handling practices and storage, are critical issues influencing the quality of stored potatoes. Studies on various factors (pre-harvest, during harvest anal post-harvest) affecting GA have been carried out from time to time, but it is difficult to compare the results of one study with another due to wide variation in the parameters chosen. This review aims to develop a clear understanding of these issues. Published information on the types of GA, their effects on health, their typical concentrations in potatoes, their formation mechanisms, and how their levels can be controlled by following appropriate post harvest practices and storage regimes are critically analysed. The levels of GA in potato can be controlled effectively by adopting appropriate post-harvest practices. Further studies are necessary, however, to investigate best practices, which either check completely or retard substantially their formation. (C) 2008 Society of Chemical Industry.
Resumo:
Background If biofuels are to be a viable substitute for fossil fuels, it is essential that they retain their potential to mitigate climate change under future atmospheric conditions. Elevated atmospheric CO2 concentration [CO2] stimulates plant biomass production; however, the beneficial effects of increased production may be offset by higher energy costs in crop management. Methodology/Main findings We maintained full size poplar short rotation coppice (SRC) systems under both current ambient and future elevated [CO2] (550 ppm) and estimated their net energy and greenhouse gas balance. We show that a poplar SRC system is energy efficient and produces more energy than required for coppice management. Even more, elevated [CO2] will increase the net energy production and greenhouse gas balance of a SRC system with 18%. Managing the trees in shorter rotation cycles (i.e. 2 year cycles instead of 3 year cycles) will further enhance the benefits from elevated [CO2] on both the net energy and greenhouse gas balance. Conclusions/significance Adapting coppice management to the future atmospheric [CO2] is necessary to fully benefit from the climate mitigation potential of bio-energy systems. Further, a future increase in potential biomass production due to elevated [CO2] outweighs the increased production costs resulting in a northward extension of the area where SRC is greenhouse gas neutral. Currently, the main part of the European terrestrial carbon sink is found in forest biomass and attributed to harvesting less than the annual growth in wood. Because SRC is intensively managed, with a higher turnover in wood production than conventional forest, northward expansion of SRC is likely to erode the European terrestrial carbon sink.
Resumo:
The possibilities and need for adaptation and mitigation depends on uncertain future developments with respect to socio-economic factors and the climate system. Scenarios are used to explore the impacts of different strategies under uncertainty. In this chapter, some scenarios are presented that are used in the ADAM project for this purpose. One scenario explores developments with no mitigation, and thus with high temperature increase and high reliance on adaptation (leading to 4oC increase by 2100 compared to pre-industrial levels). A second scenario explores an ambitious mitigation strategy (leading to 2oC increase by 2100 compared to pre-industrial levels). In the latter scenario, stringent mitigation strategies effectively reduces the risks of climate change, but based on uncertainties in the climate system a temperature increase of 3oC or more cannot be excluded. The analysis shows that, in many cases, adaptation and mitigation are not trade-offs but supplements. For example, the number of people exposed to increased water resource stress due to climate change can be substantially reduced in the mitigation scenario, but even then adaptation will be required for the remaining large numbers of people exposed to increased stress. Another example is sea level rise, for which adaptation is more cost-effective than mitigation, but mitigation can help reduce damages and the cost of adaptation. For agriculture, finally, only the scenario based on a combination of adaptation and mitigation is able to avoid serious climate change impacts.
Resumo:
With the rising rate of obesity, there is considerable interest in dietary strategies to reduce insulin resistance, a major characteristic of the metabolic syndrome and type 2 diabetes. Diets rich in monounsaturated fatty acids (MUFA) have been suggested as an alternative to low-fat, high-carbohydrate diets to improve glycemic control. However, inconsistent effects have been observed with MUFA-rich diets in both healthy and insulin-resistant individuals. In studies that have reported favorable effects on insulin sensitivity, Mediterranean-style diets have been used that are rich not only in MUFA but also whole-grain foods, fiber, and carbohydrates with a low glycemic index. There is a need for intervention studies to examine the true impact of MUFA-rich oils on glycemic control in both Mediterranean and non-Mediterranean populations. In addition, the metabolic and genotypic status of the participants may also play a role in the inter-individual variability in insulin sensitivity in response to MUFA-rich diets.
Resumo:
Scenarios are used to explore the consequences of different adaptation and mitigation strategies under uncertainty. In this paper, two scenarios are used to explore developments with (1) no mitigation leading to an increase of global mean temperature of 4 °C by 2100 and (2) an ambitious mitigation strategy leading to 2 °C increase by 2100. For the second scenario, uncertainties in the climate system imply that a global mean temperature increase of 3 °C or more cannot be ruled out. Our analysis shows that, in many cases, adaptation and mitigation are not trade-offs but supplements. For example, the number of people exposed to increased water resource stress due to climate change can be substantially reduced in the mitigation scenario, but adaptation will still be required for the remaining large numbers of people exposed to increased stress. Another example is sea level rise, for which, from a global and purely monetary perspective, adaptation (up to 2100) seems more effective than mitigation. From the perspective of poorer and small island countries, however, stringent mitigation is necessary to keep risks at manageable levels. For agriculture, only a scenario based on a combination of adaptation and mitigation is able to avoid serious climate change impacts.