7 resultados para Radon exhalation

em CentAUR: Central Archive University of Reading - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: To determine the risk of lung cancer associated with exposure at home to the radioactive disintegration products of naturally Occurring radon gas. Design: Collaborative analysis of individual data from 13 case-control studies of residential radon and lung cancer. Setting Nine European countries. Subjects 7148 cases Of lung cancer and 14 208 controls. Main outcome measures: Relative risks of lung cancer and radon gas concentrations in homes inhabited during the previous 5-34 years measured in becquerels (radon disintegrations per second) per cubic incite (Bq/m(3)) Of household air. Results: The mean measured radon concentration in homes of people in tire control group was 97 Bq/m(3), with 11% measuring > 200 and 4% measuring > 400 Bq/m(3). For cases of lung cancer the mean concentration was 104 Bq/m(3). The risk of lung cancer increased by 8.4% (95% confidence interval 3.0% to 15.8%) per 100 Bq/m(3) increase in measured radon (P = 0.0007). This corresponds to an increase of 16% (5% to 31%) per 100 Bq/m(3) increase in usual radon-that is, after correction for the dilution caused by random uncertainties in measuring radon concentrations. The dose-response relation seemed to be linear with no threshold and remained significant (P=0.04) in analyses limited to individuals from homes with measured radon < 200 Bq/m(3). The proportionate excess risk did not differ significantly with study, age, sex, or smoking. In the absence of other causes of death, the absolute risks of lung cancer by age 75 years at usual radon concentrations of 0, 100, and 400 Bq/m(3) would be about 0.4%, 0.5%, and 0.7%, respectively, for lifelong non-smokers, and about 25 times greater (10%, 12%, and 16%) for cigarette smokers. Conclusions: Collectively, though not separately, these studies show appreciable hazards from residential radon, particularly for smokers and recent ex-smokers, and indicate that it is responsible for about 2% of all deaths from cancer in Europe.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The spatial distribution of CO2 level in a classroom carried out in previous field work research has demonstrated that there is some evidence of variations in CO2 concentration in a classroom space. Significant fluctuations in CO2 concentration were found at different sampling points depending on the ventilation strategies and environmental conditions prevailing in individual classrooms. However, how these variations are affected by the emitting sources and the room air movement remains unknown. Hence, it was concluded that detailed investigation of the CO2 distribution need to be performed on a smaller scale. As a result, it was decided to use an environmental chamber with various methods and rates of ventilation, for the same internal temperature and heat loads, to study the effect of ventilation strategy and air movement on the distribution of CO2 concentration in a room. The role of human exhalation and its interaction with the plume induced by the body's convective flow and room air movement due to different ventilation strategies were studied in a chamber at the University of Reading. These phenomena are considered to be important in understanding and predicting the flow patterns in a space and how these impact on the distribution of contaminants. This paper attempts to study the CO2 dispersion and distribution at the exhalation zone of two people sitting in a chamber as well as throughout the occupied zone of the chamber. The horizontal and vertical distributions of CO2 were sampled at locations with a probability that CO2 variation is considered high. Although the room size, source location, ventilation rate and location of air supply and extract devices all can have influence on the CO2 distribution, this article gives general guidelines on the optimum positioning of CO2 sensor in a room.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tests of the new Rossby wave theories that have been developed over the past decade to account for discrepancies between theoretical wave speeds and those observed by satellite altimeters have focused primarily on the surface signature of such waves. It appears, however, that the surface signature of the waves acts only as a rather weak constraint, and that information on the vertical structure of the waves is required to better discriminate between competing theories. Due to the lack of 3-D observations, this paper uses high-resolution model data to construct realistic vertical structures of Rossby waves and compares these to structures predicted by theory. The meridional velocity of a section at 24° S in the Atlantic Ocean is pre-processed using the Radon transform to select the dominant westward signal. Normalized profiles are then constructed using three complementary methods based respectively on: (1) averaging vertical profiles of velocity, (2) diagnosing the amplitude of the Radon transform of the westward propagating signal at different depths, and (3) EOF analysis. These profiles are compared to profiles calculated using four different Rossby wave theories: standard linear theory (SLT), SLT plus mean flow, SLT plus topographic effects, and theory including mean flow and topographic effects. Our results support the classical theoretical assumption that westward propagating signals have a well-defined vertical modal structure associated with a phase speed independent of depth, in contrast with the conclusions of a recent study using the same model but for different locations in the North Atlantic. The model structures are in general surface intensified, with a sign reversal at depth in some regions, notably occurring at shallower depths in the East Atlantic. SLT provides a good fit to the model structures in the top 300 m, but grossly overestimates the sign reversal at depth. The addition of mean flow slightly improves the latter issue, but is too surface intensified. SLT plus topography rectifies the overestimation of the sign reversal, but overestimates the amplitude of the structure for much of the layer above the sign reversal. Combining the effects of mean flow and topography provided the best fit for the mean model profiles, although small errors at the surface and mid-depths are carried over from the individual effects of mean flow and topography respectively. Across the section the best fitting theory varies between SLT plus topography and topography with mean flow, with, in general, SLT plus topography performing better in the east where the sign reversal is less pronounced. None of the theories could accurately reproduce the deeper sign reversals in the west. All theories performed badly at the boundaries. The generalization of this method to other latitudes, oceans, models and baroclinic modes would provide greater insight into the variability in the ocean, while better observational data would allow verification of the model findings.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Variational data assimilation is commonly used in environmental forecasting to estimate the current state of the system from a model forecast and observational data. The assimilation problem can be written simply in the form of a nonlinear least squares optimization problem. However the practical solution of the problem in large systems requires many careful choices to be made in the implementation. In this article we present the theory of variational data assimilation and then discuss in detail how it is implemented in practice. Current solutions and open questions are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In recent years, computational fluid dynamics (CFD) has been widely used as a method of simulating airflow and addressing indoor environment problems. The complexity of airflows within the indoor environment would make experimental investigation difficult to undertake and also imposes significant challenges on turbulence modelling for flow prediction. This research examines through CFD visualization how air is distributed within a room. Measurements of air temperature and air velocity have been performed at a number of points in an environmental test chamber with a human occupant. To complement the experimental results, CFD simulations were carried out and the results enabled detailed analysis and visualization of spatial distribution of airflow patterns and the effect of different parameters to be predicted. The results demonstrate the complexity of modelling human exhalation within a ventilated enclosure and shed some light into how to achieve more realistic predictions of the airflow within an occupied enclosure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider a generic basic semi-algebraic subset S of the space of generalized functions, that is a set given by (not necessarily countably many) polynomial constraints. We derive necessary and sufficient conditions for an infinite sequence of generalized functions to be realizable on S, namely to be the moment sequence of a finite measure concentrated on S. Our approach combines the classical results about the moment problem on nuclear spaces with the techniques recently developed to treat the moment problem on basic semi-algebraic sets of Rd. In this way, we determine realizability conditions that can be more easily verified than the well-known Haviland type conditions. Our result completely characterizes the support of the realizing measure in terms of its moments. As concrete examples of semi-algebraic sets of generalized functions, we consider the set of all Radon measures and the set of all the measures having bounded Radon–Nikodym density w.r.t. the Lebesgue measure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Let X be a locally compact Polish space. A random measure on X is a probability measure on the space of all (nonnegative) Radon measures on X. Denote by K(X) the cone of all Radon measures η on X which are of the form η =