11 resultados para Radiometry
em CentAUR: Central Archive University of Reading - UK
Resumo:
A simple formulation relating the L-band microwave brightness temperature detected by a passive microwave radiometer to the near surface soil moisture was developed using MICRO-SWEAT, a coupled microwave emission model and soil-vegetation-atmosphere-transfer (SVAT) scheme. This simple model provides an ideal tool with which to explore the impact of sub-pixel heterogeneity on the retrieval of soil moisture from microwave brightness temperatures. In the case of a bare soil pixel, the relationship between apparent emissivity and surface soil moisture is approximately linear, with the clay content of the soil influencing just the intercept of this relationship. It is shown that there are no errors in the retrieved soil moisture from a bare soil pixel that is heterogeneous in soil moisture and texture. However, in the case of a vegetated pixel, the slope of the relationship between apparent emissivity and surface soil moisture decreases with increasing vegetation. Therefore for a pixel that is heterogeneous in vegetation and soil moisture, errors can be introduced into the retrieved soil moisture. Generally, under moderate conditions, the retrieved soil moisture is within 3% of the actual soil moisture. Examples illustrating this discussion use data collected during the Southern Great Plains '97 Experiment (SGP97).
Resumo:
A revised Bayesian algorithm for estimating surface rain rate, convective rain proportion, and latent heating profiles from satellite-borne passive microwave radiometer observations over ocean backgrounds is described. The algorithm searches a large database of cloud-radiative model simulations to find cloud profiles that are radiatively consistent with a given set of microwave radiance measurements. The properties of these radiatively consistent profiles are then composited to obtain best estimates of the observed properties. The revised algorithm is supported by an expanded and more physically consistent database of cloud-radiative model simulations. The algorithm also features a better quantification of the convective and nonconvective contributions to total rainfall, a new geographic database, and an improved representation of background radiances in rain-free regions. Bias and random error estimates are derived from applications of the algorithm to synthetic radiance data, based upon a subset of cloud-resolving model simulations, and from the Bayesian formulation itself. Synthetic rain-rate and latent heating estimates exhibit a trend of high (low) bias for low (high) retrieved values. The Bayesian estimates of random error are propagated to represent errors at coarser time and space resolutions, based upon applications of the algorithm to TRMM Microwave Imager (TMI) data. Errors in TMI instantaneous rain-rate estimates at 0.5°-resolution range from approximately 50% at 1 mm h−1 to 20% at 14 mm h−1. Errors in collocated spaceborne radar rain-rate estimates are roughly 50%–80% of the TMI errors at this resolution. The estimated algorithm random error in TMI rain rates at monthly, 2.5° resolution is relatively small (less than 6% at 5 mm day−1) in comparison with the random error resulting from infrequent satellite temporal sampling (8%–35% at the same rain rate). Percentage errors resulting from sampling decrease with increasing rain rate, and sampling errors in latent heating rates follow the same trend. Averaging over 3 months reduces sampling errors in rain rates to 6%–15% at 5 mm day−1, with proportionate reductions in latent heating sampling errors.
Resumo:
System aspects of filter radiometer optics used to sense planetary atmospheres are described. Thus the lenses, dichroic beamsplitters and filters in longwave channels of the Mars Observer PMIRR Pressure Modulator Infrared radiometer instrument are assessed individually, and as systems at 20.7µm, 31.9µm, 47.2µm wavelength. A window filter and a longwave calibration filter of the SCARAB earth observer instrument are assessed similarly.
Resumo:
The Earth's climate is undoubtedly changing; however, the time scale, consequences and causal attribution remain the subject of significant debate and uncertainty. Detection of subtle indicators from a background of natural variability requires measurements over a time base of decades. This places severe demands on the instrumentation used, requiring measurements of sufficient accuracy and sensitivity that can allow reliable judgements to be made decades apart. The International System of Units (SI) and the network of National Metrology Institutes were developed to address such requirements. However, ensuring and maintaining SI traceability of sufficient accuracy in instruments orbiting the Earth presents a significant new challenge to the metrology community. This paper highlights some key measurands and applications driving the uncertainty demand of the climate community in the solar reflective domain, e.g. solar irradiances and reflectances/radiances of the Earth. It discusses how meeting these uncertainties facilitate significant improvement in the forecasting abilities of climate models. After discussing the current state of the art, it describes a new satellite mission, called TRUTHS, which enables, for the first time, high-accuracy SI traceability to be established in orbit. The direct use of a ‘primary standard’ and replication of the terrestrial traceability chain extends the SI into space, in effect realizing a ‘metrology laboratory in space’.
Resumo:
Cooled infrared filters have been used in pressure modulation and filter radiometry to measure the dynamics, temperature distribution and concentrations of atmospheric elements in various satellite radiometers. Invariably such instruments use precision infrared bandpass filters and coatings for spectral selction, often operating at cryogenic temperatures. More recent developments in the use of spectrally-selective cooled detectors in focal plane arrays have simplified the optical layout and reduced the component count of radiometers but have placed additional demands on both the spectral and physical performance requirements of the filters. This paper describes and contrasts the more traditional radiometers using discrete detectors with those which use focal plane detector array technology, with particular emphasis on the function of the filters and coatings in the two cases. Additionally we discuss the spectral techniques and materials used to fabricate infrared coatings and filters for use in space optics, and give examples of their application in the fabrication of some demanding long wavelength dichroics and filters. We also discuss the effects of the space environment on the stability and durability of high performance infrared filters and materials exposed to low Earth orbit for 69 months on the NASA Long Duration Exposure Facility (LDEF).
Resumo:
Infrared filters and coatings have been employed on many sensing radiometer instruments to measure the thermal emission profiles and concentrations of certian chemical constituents found in planetary atmospheres. The High Resolution Dynamics Limb Sounder ( HIRDLS) is an example of the most recent developments in limb-viewing radiometry by employing a cooled focal plane detector array to provide simultaneous multi-channel monitoring of emission from gas and aerosols over an altitude range between 8 - 70 km. The use of spectrally selective cooled detectors in focal plane arrays has simplified the optical layout of radiometers, greatly reducing the number of components in the optical train. this has inevitably led to increased demands for the enviromnetal durability of the focal plane filters because of the need to cut sub-millimeter sizes, whilst maintaining an optimal spectral performance. Additionally the remaining refractive optical elements require antireflection coatings which must cover the entire spectral range of the focal plane array channels, in this case 6 to 18µm, with a minimum of reflection and absorption. This paper describes the optical layout and spectral design requirements for filteriong in the HIRDLS instrument, and reports progress on the manufacturing and testing of the sub-millimetre sized cooled filters. We also report on the spectral and environmental performance of prototype wideband antireflection coatings which satisfy the requirements above.
Resumo:
The All-Weather Volcano Topography Imaging Sensor remote sensing instrument is a custom-built millimeter-wave (MMW) sensor that has been developed as a practical field tool for remote sensing of volcanic terrain at active lava domes. The portable instrument combines active and passive MMW measurements to record topographic and thermal data in almost all weather conditions from ground-based survey points. We describe how the instrument is deployed in the field, the quality of the primary ranging and radiometric measurements, and the postprocessing techniques used to derive the geophysical products of the target terrain, surface temperature, and reflectivity. By comparison of changing topography, we estimate the volume change and the lava extrusion rate. Validation of the MMW radiometry is also presented by quantitative comparison with coincident infrared thermal imagery.
Resumo:
Remote sensing offers many advantages in the development of ecosystem indicators for the pelagic zone of the ocean. Particularly suitable in this context are the indicators arising from time series that can be constructed from remotely sensed data. For example, using ocean-colour radiometry, the phenology of phytoplankton blooms can be assessed. Metrics defined in this way show promise as informative indicators for the entire pelagic ecosystem. A simple phytoplankton–substrate model, with forcing dependent on latitude and day number is used to explore the qualitative features of bloom phenology for comparison with the results observed in a suite of 10-year time series of chlorophyll concentration, as assessed by remote sensing, from the Northwest Atlantic Ocean. The model reveals features of the dynamics that might otherwise have been overlooked in evaluation of the observational data.
Resumo:
Most of the operational Sea Surface Temperature (SST) products derived from satellite infrared radiometry use multi-spectral algorithms. They show, in general, reasonable performances with root mean square (RMS) residuals around 0.5 K when validated against buoy measurements, but have limitations, particularly a component of the retrieval error that relates to such algorithms' limited ability to cope with the full variability of atmospheric absorption and emission. We propose to use forecast atmospheric profiles and a radiative transfer model to simulate the algorithmic errors of multi-spectral algorithms. In the practical case of SST derived from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) onboard Meteosat Second Generation (MSG), we demonstrate that simulated algorithmic errors do explain a significant component of the actual errors observed for the non linear (NL) split window algorithm in operational use at the Centre de Météorologie Spatiale (CMS). The simulated errors, used as correction terms, reduce significantly the regional biases of the NL algorithm as well as the standard deviation of the differences with drifting buoy measurements. The availability of atmospheric profiles associated with observed satellite-buoy differences allows us to analyze the origins of the main algorithmic errors observed in the SEVIRI field of view: a negative bias in the inter-tropical zone, and a mid-latitude positive bias. We demonstrate how these errors are explained by the sensitivity of observed brightness temperatures to the vertical distribution of water vapour, propagated through the SST retrieval algorithm.