155 resultados para Radial stability
em CentAUR: Central Archive University of Reading - UK
Resumo:
Idealized, convection-resolving simulations of moist orographic flows are conducted to investigate the influence of temperature and moist stability on the drying ratio (DR), defined as the fraction of the impinging water mass removed as orographic precipitation. In flow past a long ridge, where most of the air rises over the barrier rather than detouring around it, DR decreases as the surface temperature (Ts) increases, even as the orographic cap cloud becomes statically unstable at higher Ts and develops embedded convection. This behaviour is explained by a few physical principles: (1) the Clausius–Clapeyron equation dictates that the normalized condensation rate decreases as the flow gets warmer, (2) the replacement of ice-phase precipitation growth with warm-rain processes decreases the efficiency by which condensate is converted to precipitation, thereby lowering precipitation efficiency, and (3) embedded convection acts more to vertically redistribute moisture than to enhance precipitation. Over an isolated mountain, the effects of (1) and (2) are counteracted by moisture deflection around the barrier, which is stronger in the colder, more stable flows.
Resumo:
As a soil dries, the earthworms in that soil dehydrate and become less active. Moisture stress may weaken an earthworm, lowering the radial pressure that the animal can produce. This possibility was investigated for the earthworm Aporrectodea caliginosa (Savigny). Pressures were compared for saturated earthworms (worms taken from saturated soil) and stressed earthworms (worms that had been partially dehydrated by leaving them in dry soil). A load cell was used to record the forces that earthworms produced as they moved through artificial burrows (holes that had been drilled through blocks of aluminium or Perspex). The radial pressure was calculated using the forces exerted and the dimensions of the artificial burrows. There was a negative correlation between burrow diameter and radial pressure, although radial pressure was independent of the length of the block through which the earthworms had burrowed. The highest radial pressures were produced by the anterior segments of the animal. Partial dehydration caused the earthworms to become quiescent, but did not decrease the radial pressure that the earthworms produced. It is suggested that coelomic fluid is retained in the anterior segments while the rest of the animal dehydrates. Dehydrated earthworms became lethargic, and we suggest that lethargy is due to the loss of coelomic fluid from the posterior segments. Coelomic fluid is known to be lost through dorsal pores. In burrowing species of earthworm such as Aporrectodea caliginosa, these pores are only present on the posterior segments.
Resumo:
The ability of chlorogenic acid to inhibit oxidation of human low-density lipoprotein (LDL) was studied by in vitro copper-induced LDL oxidation. The effect of chlorogenic acid on the lag time before LDL oxidation increased in a dose dependent manner by up to 176% of the control value when added at concentrations of 0.25 -1.0 μM. Dose dependent increases in lag time of LDL oxidation were also observed, but at much higher concentrations, when chlorogenic acid was incubated with LDL (up to 29.7% increase in lag phase for 10 μM chlorogenic acid) or plasma (up to 16.6% increase in lag phase for 200 μM chlorogenic acid) prior to isolation of LDL, and this indicated that chlorogenic acid was able to bind, at least weakly, to LDL. Bovine serum albumin (BSA) increased the oxidative stability of LDL in the presence of chlorogenic acid. Fluorescence spectroscopy showed that chlorogenic acid binds to BSA with a binding constant of 3.88 x 104 M-1. BSA increased the antioxidant effect of chlorogenic acid, and this was attributed to copper ions binding to BSA, thereby reducing the amount of copper available for inducing lipid peroxidation.
Resumo:
On 15-17 February 2008, a CME with an approximately circular cross section was tracked through successive images obtained by the Heliospheric Imager (HI) instrument onboard the STEREO-A spacecraft. Reasoning that an idealised flux rope is cylindrical in shape with a circular cross-section, best fit circles are used to determine the radial width of the CME. As part of the process the radial velocity and longitude of propagation are determined by fits to elongation-time maps as 252±5 km/s and 70±5° respectively. With the longitude known, the radial size is calculated from the images, taking projection effects into account. The radial width of the CME, S (AU), obeys a power law with heliocentric distance, R, as the CME travels between 0.1 and 0.4 AU, such that S=0.26 R0.6±0.1. The exponent value obtained is compared to published studies based on statistical surveys of in situ spacecraft observations of ICMEs between 0.3 and 1.0 AU, and general agreement is found. This paper demonstrates the new opportunities provided by HI to track the radial width of CMEs through the previously unobservable zone between the LASCO field of view and Helios in situ measurements.
Resumo:
We survey observations of the radial magnetic field in the heliosphere as a function of position, sunspot number, and sunspot cycle phase. We show that most of the differences between pairs of simultaneous observations, normalized using the square of the heliocentric distance and averaged over solar rotations, are consistent with the kinematic "flux excess" effect whereby the radial component of the frozen-in heliospheric field is increased by longitudinal solar wind speed structure. In particular, the survey shows that, as expected, the flux excess effect at high latitudes is almost completely absent during sunspot minimum but is almost the same as within the streamer belt at sunspot maximum. We study the uncertainty inherent in the use of the Ulysses result that the radial field is independent of heliographic latitude in the computation of the total open solar flux: we show that after the kinematic correction for the excess flux effect has been made it causes errors that are smaller than 4.5%, with a most likely value of 2.5%. The importance of this result for understanding temporal evolution of the open solar flux is reviewed.