9 resultados para RNA polymerase III

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The 5' terminus of picornavirus genomic RNA is covalently linked to the virus-encoded peptide 313 (VTg). Foot-and-mouth disease virus (FMDV) is unique in encoding and using 3 distinct forms of this peptide. These peptides each act as primers for RNA synthesis by the virus-encoded RNA polymerase 3D(pol). To act as the primer for positive-strand RNA synthesis, the 3B peptides have to be uridylylated to form VPgpU(pU). For certain picornaviruses, it has been shown that this reaction is achieved by the 3D(pol) in the presence of the 3CD precursor plus an internal RNA sequence termed a cis-acting replication element (cre). The FMDV ere has been identified previously to be within the 5' untranslated region, whereas all other picornavirus cre structures are within the viral coding region. The requirements for the in vitro uridylylation of each of the FMDV 313 peptides has now been determined, and the role of the FMDV ere (also known as the 3B-uridylylation site, or bus) in this reaction has been analyzed. The poly(A) tail does not act as a significant template for FMDV 3B uridylylation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

CSRP3 or muscle LIM protein (MLP) is a nucleocytoplasmic shuttling protein and a mechanosensor in cardiac myocytes. MLP regulation and function was studied in cultured neonatal rat myocytes treated with pharmacological or mechanical stimuli. Either verapamil or BDM decreased nuclear MLP while phenylephrine and cyclic strain increased it. These results suggest that myocyte contractility regulates MLP subcellular localization. When RNA polymerase II was inhibited with alpha-amanitin, nuclear MLP was reduced by 30%. However, when both RNA polymerase I and II were inhibited with actinomycin D, there was a 90% decrease in nuclear MLP suggesting that its nuclear translocation is regulated by both nuclear and nucleolar transcriptional activity. Using cell permeable synthetic peptides containing the putative nuclear localization signal (NLS) of MLP, nuclear import of the protein in cultured rat neonatal myocytes was inhibited. The NLS of MLP also localizes to the nucleolus. Inhibition of nuclear translocation prevented the increased protein accumulation in response to phenylephrine. Furthermore, cyclic strain of myocytes after prior NLS treatment to remove nuclear MLP resulted in disarrayed sarcomeres. Increased protein synthesis and brain natriuretic peptide expression were also prevented suggesting that MLP is required for remodeling of the myo filaments and gene expression. These findings suggest that nucleocytoplasmic shuttling MLP plays an important role in the regulation of the myocyte remodeling and hypertrophy and is required for adaptation to hypertrophic stimuli. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Caliciviruses are a major cause of gastroenteritis in humans and cause a wide variety of other diseases in animals. Here, the characterization of protein-protein interactions between the individual proteins of Feline calicivirus (FCV), a model system for other members of the family Caliciviridae, is reported. Using the yeast two-hybrid system combined with a number of other approaches, it is demonstrated that the p32 protein (the picornavirus 2B analogue) of FCV interacts with p39 (2C), p30 (3A) and p76 (3CD). The FCV protease/RNA polymerase (ProPol) p76 was found to form homo-oligomers, as well as to interact with VPg and ORF2, the region encoding the major capsid protein VP1. A weak interaction was also observed between p76 and the minor capsid protein encoded by ORF3 (VP2). ORF2 protein was found to interact with VPg, p76 and VP2. The potential roles of the interactions in calicivirus replication are discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nucleotides in the terminal loop of the poliovirus 2C cis-acting replication element (2C(CRE)), a 61 nt structured RNA, function as the template for the addition of two uridylate (U) residues to the viral protein VPg. This uridylylation reaction leads to the formation of VPgpUpU, which is used by the viral RNA polymerase as a nucleotide-peptide primer for genome replication. Although VPg primes both positive- and negative-strand replication, the specific requirement for 2C(CRE)-mediated uridylylation for one or both events has not been demonstrated. We have used a cell-free in vitro translation and replication reaction to demonstrate that 2C(CRE) is not required for the initiation of the negative-sense strand, which is synthesized in the absence of 2C(CRE)-mediated VPgpUpU formation. We propose that the 3' poly(A) tail could serve as the template for the formation of a VPg-poly(U) primer that functions in the initiation of negative-sense strands.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

FtnA is the major iron-storage protein of Escherichia coli accounting for < or = 50% of total cellular iron. The FtnA gene (ftnA) is induced by iron in an Fe(2+)-Fur-dependent fashion. This effect is reportedly mediated by RyhB, the Fe(2+)-Fur-repressed, small, regulatory RNA. However, results presented here show that ftnA iron induction is independent of RyhB and instead involves direct interaction of Fe(2+)-Fur with an 'extended' Fur binding site (containing five tandem Fur boxes) located upstream (-83) of the ftnA promoter. In addition, H-NS acts as a direct repressor of ftnA transcription by binding at multiple sites (I-VI) within, and upstream of, the ftnA promoter. Fur directly competes with H-NS binding at upstream sites (II-IV) and consequently displaces H-NS from the ftnA promoter (sites V-VI) which in turn leads to derepression of ftnA transcription. It is proposed that H-NS binding within the ftnA promoter is facilitated by H-NS occupation of the upstream sites through H-NS oligomerization-induced DNA looping. Consequently, Fur displacement of H-NS from the upstream sites prevents cooperative H-NS binding at the downstream sites within the promoter, thus allowing access to RNA polymerase. This direct activation of ftnA transcription by Fe(2+)-Fur through H-NS antisilencing represents a new mechanism for iron-induced gene expression.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Specimens taken postmortem from typical lesions of digital dermatitis in two dairy cows were tested by the polymerase chain reaction (PCR) for the presence of a spirochaetal 16S rRNA gene. Seven different assays detected the gene in the samples from both cows. Two of the PCR products were sequenced and a comparison of the nucleotide sequences revealed that the spirochaete belonged to the genus Treponema and was closely related to Treponema denticola. A PCR specific for the detection of the digital dermatitis-associated treponeme was developed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mechanisms of long-term adaptation to low oxygen environment are quite well studied, but little is known about the sensing of oxygen shortage, the signal transduction and the short-term effects of hypoxia in plant cells. We have found that an RNA helicase eIF4A-III, a putative component of the Exon Junction Complex, rapidly changes its pattern of localisation in the plant nucleus under hypoxic conditions. In normal cell growth conditions GFP- eIF4A-III was mainly nucleoplasmic, but in hypoxia stress conditions it moved to the nucleolus and splicing speckles. This transition occurred within 15-20 min in Arabidopsis culture cells and seedling root cells, but took more than 2 h in tobacco BY-2 culture cells. Inhibition of respiration, transcription or phosphorylation in cells and ethanol treatment had similar effects to hypoxia. The most likely consequence is that a certain mRNA population will remain bound to the eIF4A-III and other mRNA processing proteins, rather than being transported from the nucleus to the cytoplasm, and thus its translation will be suspended.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aquaporins (AQPs) are a family of proteins that mediate water transport across cells, but the extent to which they are involved in water transport across endothelial cells of the blood-brain barrier is not clear. Expression of AQP1 and AQP4 in rat brain microvessel endothelial cells was investigated in order to determine whether these isoforms were present and, in particular, to examine the hypothesis that brain endothelial expression of AQPs is dynamic and regulated by astrocytic influences. Reverse-transcriptase-polymerase chain reaction (RT-PCR) and immunocytochemistry showed that AQP1 mRNA and protein are present at very low levels in primary rat brain microvessel endothelial cells, and are up-regulated in passaged cells. Upon passage, endothelial cell expression of mdr1a mRNA is decreased, indicating loss of blood-brain barrier phenotype. In passage 4 endothelial cells, AQP1 mRNA levels are reduced by coculture above rat astrocytes, demonstrating that astrocytic influences are important in maintaining the low levels of AQP1 characteristic of the blood-brain barrier endothelium. Reverse-transcriptase-PCR revealed very low levels of AQP1 mRNA present in the RBE4 rat brain microvessel endothelial cell line, with no expression detected in primary cultures of rat astrocytes or in the C6 rat glioma cell line. In contrast, AQP4 mRNA is strongly expressed in astrocytes, but no expression is found in primary or passaged brain microvessel endothelial cells, or in RBE4 or C6 cells. Our results support the concept that expression of AQP1, which is seen in many non-brain endothelia, is suppressed in the specialized endothelium of the blood-brain barrier.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: To examine the effects of the consumption of fish oils on the gene expression of lipoprotein lipase (LPL, EC 3.1.1.34) in human adipose tissue. In order to measure LPL mRNA in adipose tissue samples obtained by needle biopsy from human volunteers a competitive, reverse transcriptase PCR (RT-PCR) protocol was developed. Design: A randomised controlled, single blind cross over dietary study which compared the effects of a low level n-3 polyunsaturated fatty acids (PUFA) using normal foods enriched with eicosapentaenoic (EPA) and docosahexaenoic (DHA) (test diet), with non-enriched but otherwise identical foods (control). The diets were consumed for a period of 22 d with a wash out period of 5 months between the diets. Setting: Free-living individuals associated with the University of Surrey. Subjects: Six male subjects with a mean (±sd) age of 51.2±3.6 y were recruited. Major Outcome Measures: Pre-and postprandial blood samples were taken for the measurement of triacylglycerol (TAG), postheparin LPL activity and adipose tissue samples for the measurement of LPL mRNA levels. Results: Mean LPL expression values were 4.12´105 molecules of LPL mRNA per ng total RNA on the control diet and 4.60´105 molecules of LPL mRNA per ng total RNA on the n-3 PUFA enriched (test) diet. There was no significant difference between the levels of LPL expression following each diet, consistent with the lack of change in TAG levels in response to increased dietary n-3 PUFA intake. However, the change in LPL expression (Test-Control diet) correlated significantly with the change in fasting TAG levels (P=0.03, R=-0.87 and R2=0.75) and with the total area under the TAG-time response curve (P=0.003, R=-0.96 and R2=0.92) in individuals. Conclusions: These findings, although based on a small number of subjects, suggest that LPL expression may be a determinant of plasma TAG levels. The development of this methodology should allow further elucidation of the effects of dietary manipulation and disease processes on lipid clearance and regulation in human subjects.