5 resultados para RNA interference (RNAi)

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The potency of RNA interference (RNAi) undoubtedly can be improved through chemical modifications to the small interfering RNAs (siRNA). By incorporation of the 3′-S-phosphorothiolate modification into strands of RNA, it is hoped that specific regions of a siRNA duplex can be stabilised to enhance the target binding affinity of a selected antisense strand into the activated RNA-induced silencing complex (RISC*). Oligonucleotides composed entirely of this modification are desirable so unconventional 5′ → 3′ synthesis is investigated, with initial solution-phase testing proving successful. The phosphoroamidite monomer required for solid-phase synthesis has also been produced.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cell walls of wheat (Triticum aestivum) starchy endosperm are dominated by arabinoxylan (AX), accounting for 65% to 70% of the polysaccharide content. Genes within two glycosyl transferase (GT) families, GT43 (IRREGULAR XYLEM9 [IRX9] and IRX14) and GT47 (IRX10), have previously been shown to be involved in the synthesis of the xylan backbone in Arabidopsis, and close homologs of these have been implicated in the synthesis of xylan in other species. Here, homologs of IRX10 TaGT47_2 and IRX9 TaGT43_2, which are highly expressed in wheat starchy endosperm cells, were suppressed by RNA interference (RNAi) constructs driven by a starchy endosperm-specific promoter. The total amount of AX was decreased by 40% to 50% and the degree of arabinosylation was increased by 25% to 30% in transgenic lines carrying either of the transgenes. The cell walls of starchy endosperm in sections of grain from TaGT43_2 and TaGT47_2 RNAi transgenics showed decreased immunolabeling for xylan and arabinoxylan epitopes and approximately 50% decreased cell wall thickness compared with controls. The proportion of AX that was water soluble was not significantly affected, but average AX polymer chain length was decreased in both TaGT43_2 and TaGT47_2 RNAi transgenics. However, the long AX chains seen in controls were absent in TaGT43_2 RNAi transgenics but still present in TaGT47_2 RNAi transgenics. The results support an emerging picture of IRX9-like and IRX10-like proteins acting as key components in the xylan synthesis machinery in both dicots and grasses. Since AX is the main component of dietary fiber in wheat foods, the TaGT43_2 and TaGT47_2 genes are of major importance to human nutrition.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Myostatin is a negative regulator of muscle mass, and several strategies are being developed to knockdown its expression to improve muscle-wasting conditions. Strategies using antimyostatin-blocking antibodies, inhibitory-binding partners, signal transduction blockers, and RNA interference system (RNAi)-based knockdown have yielded promising results and increased muscle mass in experimental animals. These approaches have, however, a number of disadvantages such as transient effects or adverse immune complications. We report here the use of antisense oligonucleotides (AOs) to manipulate myostatin pre-mRNA splicing and knockdown myostatin expression. Both 2’O-methyl phosphorothioate RNA (2’OMePS) and phosphorodiamidate morpholino oligomers (PMO) led to efficient exon skipping in vitro and in vivo and knockdown of myostatin at the transcript level. The substantial myostatin exon skipping observed after systemic injection of Vivo-PMO into normal mice led to a significant increase in soleus muscle mass as compared to the controls injected with normal saline suggesting that this approach could be feasible to ameliorate muscle-wasting pathologies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

(1,3;1,4)-beta-d-Glucan (beta-glucan) accounts for 20% of the total cell walls in the starchy endosperm of wheat (Triticum aestivum) and is an important source of dietary fiber for human nutrition with potential health benefits. Bioinformatic and array analyses of gene expression profiles in developing caryopses identified the CELLULOSE SYNTHASE-LIKE F6 (CSLF6) gene as encoding a putative beta-glucan synthase. RNA interference constructs were therefore designed to down-regulate CSLF6 gene expression and expressed in transgenic wheat under the control of a starchy endosperm-specific HMW subunit gene promoter. Analysis of wholemeal flours using an enzyme-based kit and by high-performance anion-exchange chromatography after digestion with lichenase showed decreases in total beta-glucan of between 30% and 52% and between 36% and 53%, respectively, in five transgenic lines compared to three control lines. The content of water-extractable beta-glucan was also reduced by about 50% in the transgenic lines, and the M(r) distribution of the fraction was decreased from an average of 79 to 85 x 10(4) g/mol in the controls and 36 to 57 x 10(4) g/mol in the transgenics. Immunolocalization of beta-glucan in semithin sections of mature and developing grains confirmed that the impact of the transgene was confined to the starchy endosperm with little or no effect on the aleurone or outer layers of the grain. The results confirm that the CSLF6 gene of wheat encodes a beta-glucan synthase and indicate that transgenic manipulation can be used to enhance the health benefits of wheat products.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Increasingly, we regard the genome as a site and source of genetic conflict. This fascinating 'bottom-up' view brings up appealing connections between genome biology and whole-organism ecology, in which populations of elements compete with one another in their genomic habitat. Unlike other habitats, though, a host genome has its own evolutionary interests and is often able to defend itself against molecular parasites. Most well-studied organisms employ strategies to protect their genomes against the harmful effects of genomic parasites, including methylation, various pathways of RNA interference, and more unusual tricks such as repeat induced point-mutation (RIP). These genome defence systems are not obscure biological curiosities, but fundamentally important to the integrity and cohesion of the genome, and exert a powerful influence on genome evolution.