5 resultados para REPTILES
em CentAUR: Central Archive University of Reading - UK
Resumo:
Adaptive radiations often follow the evolution of key traits, such as the origin of the amniotic egg and the subsequent radiation of terrestrial vertebrates. The mechanism by which a species determines the sex of its offspring has been linked to critical ecological and life-history traits(1-3) but not to major adaptive radiations, in part because sex-determining mechanisms do not fossilize. Here we establish a previously unknown coevolutionary relationship in 94 amniote species between sex-determining mechanism and whether a species bears live young or lays eggs. We use that relationship to predict the sex-determining mechanism in three independent lineages of extinct Mesozoic marine reptiles (mosasaurs, sauropterygians and ichthyosaurs), each of which is known from fossils to have evolved live birth(4-7). Our results indicate that each lineage evolved genotypic sex determination before acquiring live birth. This enabled their pelagic radiations, where the relatively stable temperatures of the open ocean constrain temperature-dependent sex determination in amniote species. Freed from the need to move and nest on land(4,5,8), extreme physical adaptations to a pelagic lifestyle evolved in each group, such as the fluked tails, dorsal fins and wing-shaped limbs of ichthyosaurs. With the inclusion of ichthyosaurs, mosasaurs and sauropterygians, genotypic sex determination is present in all known fully pelagic amniote groups (sea snakes, sirenians and cetaceans), suggesting that this mode of sex determination and the subsequent evolution of live birth are key traits required for marine adaptive radiations in amniote lineages.
Resumo:
The trace fossils of the Wealden (non-marine Lower Cretaceous) of southern England are described. Sixteen invertebrate ichnotaxa include Agrichnium fimbriatus, Beaconites antarcticus, B. barretti, Cochlichnus anguineus, Diplichnites triassicus, Diplocraterion parallelum, Lockeia siliquaria, L. serialis, Monocraterion cf. tentaculum, Palaeophycus striatus, P. tubularis, Planolites montanus, Protovirgularia rugosa, Rhizocorallium isp., Scoyenia cf. gracilis, Unisulcus minutus, insect and root traces. Tetrapod tracks and trackways include tridactyl Iguanodontipus burreyi and other ornithopods, theropod, and tetradactyl sauropod (or possibly ankylosaur), together with extensive dinosaur tramplings. Coprolites are referred to two broad types: spiral, with or without included fish scales (attributable to sharks), and elongate and irregular (possibly produced by reptiles). A skinprint and two types of pseudofossil are also included. Five environmental associations are recognised: (1) lacustrine/lagoonal; (2) brackish incursions (flooding events) into the lacustrine/lagoonal environment; (3) a marginal lacustrine association with fluvial input; (4) a fluvial (lacustrine delta) association; (5) floodplain sediments (seasonal wetlands). These associations are assigned to the fluvial-lacustrine Scoyenia Ichnofacies and the incursions to Glossifungites lchnofacies. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
This release of the Catalogue of Life contains contributions from 132 databases with information on 1,352,112 species, 114,069 infraspecific taxa and also includes 928,147 synonyms and 408,689 common names covering the following groups: Viruses • Viruses and Subviral agents from ICTV_MSL UPDATED! Bacteria and Archaea from BIOS Chromista • Chromistan fungi from Species Fungorum Protozoa • Major groups from ITIS Regional, • Ciliates from CilCat, • Polycystines from WoRMS Polycystina UPDATED!, • Protozoan fungi from Species Fungorum and Trichomycetes database • Slime moulds from Nomen.eumycetozoa.com Fungi • Various taxa in whole or in part from CABI Bioservices databases (Species Fungorum, Phyllachorales, Rhytismatales, Saccharomycetes and Zygomycetes databases) and from three other databases covering Xylariaceae, Glomeromycota, Trichomycetes, Dothideomycetes • Lichens from LIAS UPDATED! Plantae (Plants) • Mosses from MOST • Liverworts and hornworts from ELPT • Conifers from Conifer Database • Cycads and 6 flowering plant families from IOPI-GPC, and 99 families from WCSP • Plus individual flowering plants families from AnnonBase, Brassicaceae, ChenoBase, Droseraceae Database, EbenaBase, GCC UPDATED!, ILDIS UPDATED!, LecyPages, LHD, MELnet UPDATED!, RJB Geranium, Solanaceae Source, Umbellifers. Animalia (Animals) • Marine groups from URMO, ITIS Global, Hexacorals, ETI WBD (Euphausiacea), WoRMS: WoRMS Asteroidea UPDATED!, WoRMS Bochusacea UPDATED!, WoRMS Brachiopoda UPDATED!, WoRMS Brachypoda UPDATED!, WoRMS Brachyura UPDATED!, WoRMS Bryozoa UPDATED!, WoRMS Cestoda NEW!, WoRMS Chaetognatha UPDATED!, WoRMS Cumacea UPDATED!, WoRMS Echinoidea UPDATED!, WoRMS Gastrotricha NEW!, WoRMS Gnathostomulida NEW!, WoRMS Holothuroidea UPDATED!, WoRMS Hydrozoa UPDATED!, WoRMS Isopoda UPDATED!, WoRMS Leptostraca UPDATED!, WoRMS Monogenea NEW!, WoRMS Mystacocarida UPDATED!, WoRMS Myxozoa NEW!, WoRMS Nemertea UPDATED!, WoRMS Oligochaeta UPDATED!, WoRMS Ophiuroidea UPDATED!, WoRMS Phoronida UPDATED!, WoRMS Placozoa NEW!, WoRMS Polychaeta UPDATED!, WoRMS Polycystina UPDATED!, WoRMS Porifera UPDATED!, WoRMS Priapulida NEW!, WoRMS Proseriata and Kalyptorhynchia UPDATED!, WoRMS Remipedia UPDATED!, WoRMS Scaphopoda UPDATED!, WoRMS Tanaidacea UPDATED!, WoRMS Tantulocarida UPDATED!, WoRMS Thermosbaenacea UPDATED!, WoRMS Trematoda NEW!, WoRMS Xenoturbellida UPDATED! • Rotifers, mayflies, freshwater hairworms, planarians from FADA databases: FADA Rotifera UPDATED!, FADA Ephemeroptera NEW!, FADA Nematomorpha NEW! & FADA Turbellaria NEW! • Entoprocts, water bears from ITIS Global • Spiders, scorpions, ticks & mites from SpidCat via ITIS UPDATED!, SalticidDB , ITIS Global, TicksBase, SpmWeb BdelloideaBase UPDATED! & Mites GSDs: OlogamasidBase, PhytoseiidBase, RhodacaridBase & TenuipalpidBase • Diplopods, centipedes, pauropods and symphylans from SysMyr UPDATED! & ChiloBase • Dragonflies and damselflies from Odonata database • Stoneflies from PlecopteraSF UPDATED! • Cockroaches from BlattodeaSF UPDATED! • Praying mantids from MantodeaSF UPDATED! • Stick and leaf insects from PhasmidaSF UPDATED! • Grasshoppers, locusts, katydids and crickets from OrthopteraSF UPDATED! • Webspinners from EmbiopteraSF UPDATED! • Bark & parasitic lices from PsocodeaSF NEW! • Some groups of true bugs from ScaleNet, FLOW, COOL, Psyllist, AphidSF UPDATED! , MBB, 3i Cicadellinae, 3i Typhlocybinae, MOWD & CoreoideaSF NEW!• Twisted-wing parasites from Strepsiptera Database UPDATED! • Lacewings, antlions, owlflies, fishflies, dobsonflies & snakeflies from LDL Neuropterida • Some beetle groups from the Scarabs UPDATED!, TITAN, WTaxa & ITIS Global • Fleas from Parhost • Flies, mosquitoes, bots, midges and gnats from Systema Dipterorum, CCW & CIPA • Butterflies and moths from LepIndex UPDATED!, GloBIS (GART) UPDATED!, Tineidae NHM, World Gracillariidae • Bees & wasps from ITIS Bees, Taxapad Ichneumonoidea, UCD, ZOBODAT Vespoidea & HymIS Rhopalosomatidae NEW!• Molluscs from WoRMS Mollusca NEW!, FADA Bivalvia NEW!, MolluscaFW NEW! & AFD (Pulmonata) • Fishes from FishBase UPDATED! • Reptiles from TIGR Reptiles • Amphibians, birds and mammals from ITIS Global PLUS additional species of many groups from ITIS Regional, NZIB and CoL China NEW!
Resumo:
The contraction of a species’ distribution range, which results from the extirpation of local populations, generally precedes its extinction. Therefore, understanding drivers of range contraction is important for conservation and management. Although there are many processes that can potentially lead to local extirpation and range contraction, three main null models have been proposed: demographic, contagion, and refuge. The first two models postulate that the probability of local extirpation for a given area depends on its relative position within the range; but these models generate distinct spatial predictions because they assume either a ubiquitous (demographic) or a clinal (contagion) distribution of threats. The third model (refuge) postulates that extirpations are determined by the intensity of human impacts, leading to heterogeneous spatial predictions potentially compatible with those made by the other two null models. A few previous studies have explored the generality of some of these null models, but we present here the first comprehensive evaluation of all three models. Using descriptive indices and regression analyses we contrast the predictions made by each of the null models using empirical spatial data describing range contraction in 386 terrestrial vertebrates (mammals, birds, amphibians, and reptiles) distributed across the World. Observed contraction patterns do not consistently conform to the predictions of any of the three models, suggesting that these may not be adequate null models to evaluate range contraction dynamics among terrestrial vertebrates. Instead, our results support alternative null models that account for both relative position and intensity of human impacts. These new models provide a better multifactorial baseline to describe range contraction patterns in vertebrates. This general baseline can be used to explore how additional factors influence contraction, and ultimately extinction for particular areas or species as well as to predict future changes in light of current and new threats.