3 resultados para RENORMALIZATION GROUP

em CentAUR: Central Archive University of Reading - UK


Relevância:

60.00% 60.00%

Publicador:

Resumo:

We discuss several methods of calculating the DIS structure functions F2(x,Q2) based on BFKL-type small x resummations. Taking into account new HERA data ranging down to small xand low Q2, the pure leading order BFKL-based approach is excluded. Other methods based on high energy factorization are closer to conventional renormalization group equations. Despite several difficulties and ambiguities in combining the renormalization group equations with small x resummed terms, we find that a fit to the current data is hardly feasible, since the data in the low Q2 region are not as steep as the BFKL formalism predicts. Thus we conclude that deviations from the (successful) renormalization group approach towards summing up logarithms in 1/x are disfavoured by experiment.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

It has been observed recently that a consistent LO BFKL gluon evolution leads to a steep growth of F2(x, Q2) for x → 0 almost independently of Q2. We show that current data from the DESY HERA collider are precise enough to finally rule out a pure BFKL behaviour in the accessible small x region. Several attempts have been made by other groups to treat the BFKL type small x resummations instead as additions to the conventional anomalous dimensions of the successful renormalization group “Altarelli-Parisi” equations. We demonstrate that all presently available F2 data, in particular at lower values of Q2, can not be described using the presently known NLO (two-loop consistent) small x resummations. Finally we comment on the common reason for the failure of these BFKL inspired methods which result, in general, in too steep >x-dependencies as x → 0.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The BFKL equation and the kT-factorization theorem are used to obtain predictions for F2 in the small Bjo/rken-x region over a wide range of Q2. The dependence on the parameters, especially on those concerning the infrared region, is discussed. After a background fit to recent experimental data obtained at DESY HERA and at Fermilab (E665 experiment) we find that the predicted, almost Q2 independent BFKL slope λ≳0.5 appears to be too steep at lower Q2 values. Thus there seems to be a chance that future HERA data can distinguish between pure BFKL and conventional field theoretic renormalization group approaches. © 1995 The American Physical Society.