15 resultados para REINFORCED COMPOSITES
em CentAUR: Central Archive University of Reading - UK
Resumo:
This paper presents a completely new design of a bogie-frame made of glass fibre reinforced composites and its performance under various loading conditions predicted by finite element analysis. The bogie consists of two frames, with one placed on top of the other, and two axle ties connecting the axles. Each frame consists of two side arms and a transom between. The top frame is thinner and more compliant and has a higher curvature compared with the bottom frame. Variable vertical stiffness can be achieved before and after the contact between the two frames at the central section of the bogie to cope with different load levels. Finite element analysis played a very important role in the design of this structure. Stiffness and stress levels of the full scale bogie presented in this paper under various loading conditions have been predicted by using Marc provided by MSC Software. In order to verify the finite element analysis (FEA) models, a fifth scale prototype of the bogie has been made and tested under quasi-static loading conditions. Results of testing on the fifth scale bogie have been used to fine tune details like contact and friction in the fifth scale FEA models. These conditions were then applied to the full scale models. Finite element analysis results show that the stress levels in all directions are low compared with material strengths.
Resumo:
The use of plants fibre reinforced composites has continuously increased during recent years. Their low density, higher environmental friendliness, and reduced cost proved particularly attractive for low-tech applications e.g., in building, automotive and leisure time industry. However, a major limitation to the use of these materials in structural components is unsatisfactory impact performance. An intermediate approach, the production of glass/ plant fibre hybrid laminates, has also been explored, trying to obtain materials with sufficient impact properties, whilst retaining a reduced cost and a substantial environmental gain. A survey is given on some aspects, crucial for the use of glass/plant fibre hybrid laminates in structural components: performance of hybrids when subjected to impact testing; the effect of laminate configuration, manufacturing procedure and fibre treatment on impact properties of the composite. Finally, indications are provided for a suitable selection of plant fibres with minimal extraction damage and sufficient toughness, for introduction in an impact-resistant glass/plant fibre hybrid laminate.
Resumo:
In this work, IR thermography is used as a non-destructive tool for impact damage characterisation on thermoplastic E-glass/polypropylene composites for automotive applications. The aim of this experimentation was to compare impact resistance and to characterise damage patterns of different laminates, in order to provide indications for their use in components. Two E-glass/polypropylene composites, commingled ®Twintex (with three different weave structures: directional, balanced and 3-D) and random reinforced GMT, were in particular characterised. Directional and balanced Twintex were also coupled in a number of hybrid configurations with GMT to evaluate the possible use of GMT/Twintex hybrids in high-energy absorption components. The laminates were impacted using a falling weight tower, with impact energies ranging from 15 J to penetration. Using IR thermography during cooling down following a long pulse (3 s), impact damaged areas were characterised and the influence of weave structure on damage patterns was studied. IR thermography offered good accuracy for laminates with thickness not exceeding 3.5 mm: this appears to be a limit for the direct use of this method on components, where more refined signal treatment would probably be needed for impact damage characterisation.
Resumo:
Conductive elastic materials are formed by distributing conductive particles within an elastic polymer. We consider a novel composite based on dendritic nickel particles that exhibit remarkably strong negative piezoresistivity with an increase in conductivity of up to 10 orders of magnitude with strains of the order of 0.2. A vital factor for the conductivity of conductive elastomers is the concentration of conductive fillers and many aspects can be understood in terms of percolation theory. In this system the concentration of particles within the composite does not change with strain, yet due to the shape of the particles, the concentration of electrical contacts between the particles does change. We have developed a new model based on the concentration of contact sites, rather than particles which enables us to successfully model this remarkable strain-dependence of conductivity.
Resumo:
Rubber composites containing multiwalled carbon nanotubes have been irradiated with near-infrared light to study their reversible photomechanical actuation response. We demonstrate that the actuation is reproducible across differing polymer systems. The response is directly related to the degree of uniaxial alignment of the nanotubes in the matrix, contracting the samples along the alignment axis. The actuation stroke depends on the specific polymer being tested; however, the general response is universal for all composites tested. We conduct a detailed study of tube alignment induced by stress and propose a model for the reversible actuation behavior based on the orientational averaging of the local response. The single phenomenological parameter of this model describes the response of an individual tube to adsorption of low-energy photons; its experimentally determined value may suggest some ideas about such a response.
Resumo:
Xyloglucan-acting enzymes are believed to have effects on type I primary plant cell wall mechanical properties. In order to get a better understanding of these effects, a range of enzymes with different in vitro modes of action were tested against cell wall analogues (bio-composite materials based on Acetobacter xylinus cellulose and xyloglucan). Tomato pericarp xyloglucan endo transglycosylase (tXET) and nasturtium seed xyloglucanase (nXGase) were produced heterologously in Pichia pastoris. Their action against the cell wall analogues was compared with that of a commercial preparation of Trichoderma endo-glucanase (EndoGase). Both 'hydrolytic' enzymes (nXGase and EndoGase) were able to depolymerise not only the cross-link xyloglucan fraction but also the surface-bound fraction. Consequent major changes in cellulose fibril architecture were observed. In mechanical terms, removal of xyloglucan cross-links from composites resulted in increased stiffness (at high strain) and decreased visco-elasticity with similar extensibility. On the other hand, true transglycosylase activity (tXET) did not affect the cellulose/xyloglucan ratio. No change in composite stiffness or extensibility resulted, but a significant increase in creep behaviour was observed in the presence of active tXET. These results provide direct in vitro evidence for the involvement of cell wall xyloglucan-specific enzymes in mechanical changes underlying plant cell wall re-modelling and growth processes. Mechanical consequences of tXET action are shown to be complimentary to those of cucumber expansin.
Resumo:
Observations of boundary-layer cloud have been made using radar and lidar at Chilbolton, Hampshire, UK. These have been compared with output from 7 different global and regional models. Fifty-five cloudy days have been composited to reveal the mean diurnal variation of cloud top and base heights, cloud thickness and liquid water path of the clouds. To enable like-for-like comparison between model and observations, the observations have been averaged on to the grid of each model. The composites show a distinct diurnal cycle in observed cloud; the cloud height exhibits a sinusoidal variation throughout the day with a maximum at around 1600 and a minimum at around 0700 UTC. This diurnal cycle is captured by six of the seven models analysed, although the models generally under-predict both cloud top and cloud base heights throughout the day. The two worst performing models in terms of cloud boundaries also have biases of around a factor of two in liquid water path; these were the only two models that did not include an explicit formulation for cloud-top entrainment.
Resumo:
Extinction following positively reinforced operant conditioning reduces response frequency, at least in part through the aversive or frustrative effects of non-reinforcement. According to J.A. Gray's theory, non-reinforcement activates the behavioural inhibition system which in turn causes anxiety. As predicted, anxiolytic drugs including benzodiazepines affect the operant extinction process. Recent studies have shown that reducing GABA-mediated neurotransmission retards extinction of aversive conditioning. We have shown in a series of studies that anxiolytic compounds that potentiate GABA facilitate extinction of positively reinforced fixed-ratio operant behaviour in C57B1/6 male mice. This effect does not occur in the early stages of extinction, nor is it dependent on cumulative effects of the compound administered. Potentiation of GABA at later stages has the effect of increasing sensitivity to the extinction contingency and facilitates the inhibition of the behaviour that is no longer required. The GABAergic hypnotic, zolpidem, has the same selective effects on operant extinction in this procedure. The effects of zolpidem are not due to sedative action. There is evidence across our series of experiments that different GABA-A subtype receptors are involved in extinction facilitation and anxiolysis. Consequently, this procedure may not be an appropriate model for anxiolytic drug action, but it may be a useful technique for analysing the neural bases of extinction and designing therapeutic interventions in humans where failure to extinguish inappropriate behaviours can lead to pathological conditions such as post-traumatic stress disorder.
Resumo:
A series of polymers capable of self-assembling into infinite networks via supramolecular interactions have been designed, synthesized, and characterized for use in 3D printing applications. The biocompatible polymers and their composites with silica nanoparticles were successfully utilized to deposit both simple cubic structures, as well as a more complex twisted pyramidal feature. The polymers were found to be not toxic to a chondrogenic cell line, according to ISO 10993-5 and 10993-12 standard tests and the cells attached to the supramolecular polymers as demonstrated by confocal microscopy. Silica nanoparticles were then dispersed within the polymer matrix, yielding a composite material which was optimized for inkjet printing. The hybrid material showed promise in preliminary tests to facilitate the 3D deposition of a more complex structure.