467 resultados para REGIONAL CLIMATE MODELS
em CentAUR: Central Archive University of Reading - UK
Resumo:
Resumo:
An evaluation is undertaken of the statistics of daily precipitation as simulated by five regional climate models using comprehensive observations in the region of the European Alps. Four limited area models and one variable-resolution global model are considered, all with a grid spacing of 50 km. The 15-year integrations were forced from reanalyses and observed sea surface temperature and sea ice (global model from sea surface only). The observational reference is based on 6400 rain gauge records (10–50 stations per grid box). Evaluation statistics encompass mean precipitation, wet-day frequency, precipitation intensity, and quantiles of the frequency distribution. For mean precipitation, the models reproduce the characteristics of the annual cycle and the spatial distribution. The domain mean bias varies between −23% and +3% in winter and between −27% and −5% in summer. Larger errors are found for other statistics. In summer, all models underestimate precipitation intensity (by 16–42%) and there is a too low frequency of heavy events. This bias reflects too dry summer mean conditions in three of the models, while it is partly compensated by too many low-intensity events in the other two models. Similar intermodel differences are found for other European subregions. Interestingly, the model errors are very similar between the two models with the same dynamical core (but different parameterizations) and they differ considerably between the two models with similar parameterizations (but different dynamics). Despite considerable biases, the models reproduce prominent mesoscale features of heavy precipitation, which is a promising result for their use in climate change downscaling over complex topography.
Resumo:
This study presents a model intercomparison of four regional climate models (RCMs) and one variable resolution atmospheric general circulation model (AGCM) applied over Europe with special focus on the hydrological cycle and the surface energy budget. The models simulated the 15 years from 1979 to 1993 by using quasi-observed boundary conditions derived from ECMWF re-analyses (ERA). The model intercomparison focuses on two large atchments representing two different climate conditions covering two areas of major research interest within Europe. The first is the Danube catchment which represents a continental climate dominated by advection from the surrounding land areas. It is used to analyse the common model error of a too dry and too warm simulation of the summertime climate of southeastern Europe. This summer warming and drying problem is seen in many RCMs, and to a less extent in GCMs. The second area is the Baltic Sea catchment which represents maritime climate dominated by advection from the ocean and from the Baltic Sea. This catchment is a research area of many studies within Europe and also covered by the BALTEX program. The observed data used are monthly mean surface air temperature, precipitation and river discharge. For all models, these are used to estimate mean monthly biases of all components of the hydrological cycle over land. In addition, the mean monthly deviations of the surface energy fluxes from ERA data are computed. Atmospheric moisture fluxes from ERA are compared with those of one model to provide an independent estimate of the convergence bias derived from the observed data. These help to add weight to some of the inferred estimates and explain some of the discrepancies between them. An evaluation of these biases and deviations suggests possible sources of error in each of the models. For the Danube catchment, systematic errors in the dynamics cause the prominent summer drying problem for three of the RCMs, while for the fourth RCM this is related to deficiencies in the land surface parametrization. The AGCM does not show this drying problem. For the Baltic Sea catchment, all models similarily overestimate the precipitation throughout the year except during the summer. This model deficit is probably caused by the internal model parametrizations, such as the large-scale condensation and the convection schemes.
Resumo:
Abstract This study presents a model intercomparison of four regional climate models (RCMs) and one variable resolution atmospheric general circulation model (AGCM) applied over Europe with special focus on the hydrological cycle and the surface energy budget. The models simulated the 15 years from 1979 to 1993 by using quasi-observed boundary conditions derived from ECMWF re-analyses (ERA). The model intercomparison focuses on two large atchments representing two different climate conditions covering two areas of major research interest within Europe. The first is the Danube catchment which represents a continental climate dominated by advection from the surrounding land areas. It is used to analyse the common model error of a too dry and too warm simulation of the summertime climate of southeastern Europe. This summer warming and drying problem is seen in many RCMs, and to a less extent in GCMs. The second area is the Baltic Sea catchment which represents maritime climate dominated by advection from the ocean and from the Baltic Sea. This catchment is a research area of many studies within Europe and also covered by the BALTEX program. The observed data used are monthly mean surface air temperature, precipitation and river discharge. For all models, these are used to estimate mean monthly biases of all components of the hydrological cycle over land. In addition, the mean monthly deviations of the surface energy fluxes from ERA data are computed. Atmospheric moisture fluxes from ERA are compared with those of one model to provide an independent estimate of the convergence bias derived from the observed data. These help to add weight to some of the inferred estimates and explain some of the discrepancies between them. An evaluation of these biases and deviations suggests possible sources of error in each of the models. For the Danube catchment, systematic errors in the dynamics cause the prominent summer drying problem for three of the RCMs, while for the fourth RCM this is related to deficiencies in the land surface parametrization. The AGCM does not show this drying problem. For the Baltic Sea catchment, all models similarily overestimate the precipitation throughout the year except during the summer. This model deficit is probably caused by the internal model parametrizations, such as the large-scale condensation and the convection schemes.
Intercomparison of water and energy budgets simulated by regional climate models applied over Europe
Resumo:
To date, a number of studies have focused on the influence of sea surface temperature (SST) on global and regional rainfall variability, with the majority of these focusing on certain ocean basins e.g. the Pacific, North Atlantic and Indian Ocean. In contrast, relatively less work has been done on the influence of the central South Atlantic, particularly in relation to rainfall over southern Africa. Previous work by the authors, using reanalysis data and general circulation model (GCM) experiments, has suggested that cold SST anomalies in the central southern Atlantic Ocean are linked to an increase in rainfall extremes across southern Africa. In this paper we present results from idealised regional climate model (RCM) experiments forced with both positive and negative SST anomalies in the southern Atlantic Ocean. These experiments reveal an unexpected response of rainfall over southern Africa. In particular it was found that SST anomalies of opposite sign can cause similar rainfall responses in the model experiments, with isolated increases in rainfall over central southern Africa as well as a large region of drying over the Mozambique Channel. The purpose of this paper is to highlight this finding and explore explanations for the behaviour of the climate model. It is suggested that the observed changes in rainfall might result from the redistribution of energy (associated with upper level changes to Rossby waves) or, of more concern, model error, and therefore the paper concludes that the results of idealised regional climate models forced with SST anomalies should be viewed cautiously.
Resumo:
We present an intercomparison and verification analysis of 20 GCMs (Global Circulation Models) included in the 4th IPCC assessment report regarding their representation of the hydrological cycle on the Danube river basin for 1961–2000 and for the 2161–2200 SRESA1B scenario runs. The basin-scale properties of the hydrological cycle are computed by spatially integrating the precipitation, evaporation, and runoff fields using the Voronoi-Thiessen tessellation formalism. The span of the model- simulated mean annual water balances is of the same order of magnitude of the observed Danube discharge of the Delta; the true value is within the range simulated by the models. Some land components seem to have deficiencies since there are cases of violation of water conservation when annual means are considered. The overall performance and the degree of agreement of the GCMs are comparable to those of the RCMs (Regional Climate Models) analyzed in a previous work, in spite of the much higher resolution and common nesting of the RCMs. The reanalyses are shown to feature several inconsistencies and cannot be used as a verification benchmark for the hydrological cycle in the Danubian region. In the scenario runs, for basically all models the water balance decreases, whereas its interannual variability increases. Changes in the strength of the hydrological cycle are not consistent among models: it is confirmed that capturing the impact of climate change on the hydrological cycle is not an easy task over land areas. Moreover, in several cases we find that qualitatively different behaviors emerge among the models: the ensemble mean does not represent any sort of average model, and often it falls between the models’ clusters.
Resumo:
An analysis of the climate of precipitation extremes as simulated by six European regional climate models (RCMs) is undertaken in order to describe/quantify future changes and to examine/interpret differences between models. Each model has adopted boundary conditions from the same ensemble of global climate model integrations for present (1961–1990) and future (2071–2100) climate under the Intergovernmental Panel on Climate Change A2 emission scenario. The main diagnostics are multiyear return values of daily precipitation totals estimated from extreme value analysis. An evaluation of the RCMs against observations in the Alpine region shows that model biases for extremes are comparable to or even smaller than those for wet day intensity and mean precipitation. In winter, precipitation extremes tend to increase north of about 45°N, while there is an insignificant change or a decrease to the south. In northern Europe the 20-year return value of future climate corresponds to the 40- to 100-year return value of present climate. There is a good agreement between the RCMs, and the simulated change is similar to a scaling of present-day extremes by the change in average events. In contrast, there are large model differences in summer when RCM formulation contributes significantly to scenario uncertainty. The model differences are well explained by differences in the precipitation frequency and intensity process, but in all models, extremes increase more or decrease less than would be expected from the scaling of present-day extremes. There is evidence for a component of the change that affects extremes specifically and is consistent between models despite the large variation in the total response.
Conditioning model output statistics of regional climate model precipitation on circulation patterns
Resumo:
Dynamical downscaling of Global Climate Models (GCMs) through regional climate models (RCMs) potentially improves the usability of the output for hydrological impact studies. However, a further downscaling or interpolation of precipitation from RCMs is often needed to match the precipitation characteristics at the local scale. This study analysed three Model Output Statistics (MOS) techniques to adjust RCM precipitation; (1) a simple direct method (DM), (2) quantile-quantile mapping (QM) and (3) a distribution-based scaling (DBS) approach. The modelled precipitation was daily means from 16 RCMs driven by ERA40 reanalysis data over the 1961–2000 provided by the ENSEMBLES (ENSEMBLE-based Predictions of Climate Changes and their Impacts) project over a small catchment located in the Midlands, UK. All methods were conditioned on the entire time series, separate months and using an objective classification of Lamb's weather types. The performance of the MOS techniques were assessed regarding temporal and spatial characteristics of the precipitation fields, as well as modelled runoff using the HBV rainfall-runoff model. The results indicate that the DBS conditioned on classification patterns performed better than the other methods, however an ensemble approach in terms of both climate models and downscaling methods is recommended to account for uncertainties in the MOS methods.
Resumo:
In order to evaluate the future potential benefits of emission regulation on regional air quality, while taking into account the effects of climate change, off-line air quality projection simulations are driven using weather forcing taken from regional climate models. These regional models are themselves driven by simulations carried out using global climate models (GCM) and economical scenarios. Uncertainties and biases in climate models introduce an additional “climate modeling” source of uncertainty that is to be added to all other types of uncertainties in air quality modeling for policy evaluation. In this article we evaluate the changes in air quality-related weather variables induced by replacing reanalyses-forced by GCM-forced regional climate simulations. As an example we use GCM simulations carried out in the framework of the ERA-interim programme and of the CMIP5 project using the Institut Pierre-Simon Laplace climate model (IPSLcm), driving regional simulations performed in the framework of the EURO-CORDEX programme. In summer, we found compensating deficiencies acting on photochemistry: an overestimation by GCM-driven weather due to a positive bias in short-wave radiation, a negative bias in wind speed, too many stagnant episodes, and a negative temperature bias. In winter, air quality is mostly driven by dispersion, and we could not identify significant differences in either wind or planetary boundary layer height statistics between GCM-driven and reanalyses-driven regional simulations. However, precipitation appears largely overestimated in GCM-driven simulations, which could significantly affect the simulation of aerosol concentrations. The identification of these biases will help interpreting results of future air quality simulations using these data. Despite these, we conclude that the identified differences should not lead to major difficulties in using GCM-driven regional climate simulations for air quality projections.
Resumo:
The impact of climate change on wind power generation potentials over Europe is investigated by considering ensemble projections from two regional climate models (RCMs) driven by a global climate model (GCM). Wind energy density and its interannual variability are estimated based on hourly near-surface wind speeds. Additionally, the possible impact of climatic changes on the energy output of a sample 2.5-MW turbine is discussed. GCM-driven RCM simulations capture the behavior and variability of current wind energy indices, even though some differences exist when compared with reanalysis-driven RCM simulations. Toward the end of the twenty-first century, projections show significant changes of energy density on annual average across Europe that are substantially stronger in seasonal terms. The emergence time of these changes varies from region to region and season to season, but some long-term trends are already statistically significant in the middle of the twenty-first century. Over northern and central Europe, the wind energy potential is projected to increase, particularly in winter and autumn. In contrast, energy potential over southern Europe may experience a decrease in all seasons except for the Aegean Sea. Changes for wind energy output follow the same patterns but are of smaller magnitude. The GCM/RCM model chains project a significant intensification of both interannual and intra-annual variability of energy density over parts of western and central Europe, thus imposing new challenges to a reliable pan-European energy supply in future decades.
Resumo:
Faced by the realities of a changing climate, decision makers in a wide variety of organisations are increasingly seeking quantitative predictions of regional and local climate. An important issue for these decision makers, and for organisations that fund climate research, is what is the potential for climate science to deliver improvements - especially reductions in uncertainty - in such predictions? Uncertainty in climate predictions arises from three distinct sources: internal variability, model uncertainty and scenario uncertainty. Using data from a suite of climate models we separate and quantify these sources. For predictions of changes in surface air temperature on decadal timescales and regional spatial scales, we show that uncertainty for the next few decades is dominated by sources (model uncertainty and internal variability) that are potentially reducible through progress in climate science. Furthermore, we find that model uncertainty is of greater importance than internal variability. Our findings have implications for managing adaptation to a changing climate. Because the costs of adaptation are very large, and greater uncertainty about future climate is likely to be associated with more expensive adaptation, reducing uncertainty in climate predictions is potentially of enormous economic value. We highlight the need for much more work to compare: a) the cost of various degrees of adaptation, given current levels of uncertainty; and b) the cost of new investments in climate science to reduce current levels of uncertainty. Our study also highlights the importance of targeting climate science investments on the most promising opportunities to reduce prediction uncertainty.
Resumo:
The performance of the atmospheric component of the new Hadley Centre Global Environmental Model (HadGEM1) is assessed in terms of its ability to represent a selection of key aspects of variability in the Tropics and extratropics. These include midlatitude storm tracks and blocking activity, synoptic variability over Europe, and the North Atlantic Oscillation together with tropical convection, the Madden-Julian oscillation, and the Asian summer monsoon. Comparisons with the previous model, the Third Hadley Centre Coupled Ocean-Atmosphere GCM (HadCM3), demonstrate that there has been a considerable increase in the transient eddy kinetic energy (EKE), bringing HadGEM1 into closer agreement with current reanalyses. This increase in EKE results from the increased horizontal resolution and, in combination with the improved physical parameterizations, leads to improvements in the representation of Northern Hemisphere storm tracks and blocking. The simulation of synoptic weather regimes over Europe is also greatly improved compared to HadCM3, again due to both increased resolution and other model developments. The variability of convection in the equatorial region is generally stronger and closer to observations than in HadCM3. There is, however, still limited convective variance coincident with several of the observed equatorial wave modes. Simulation of the Madden-Julian oscillation is improved in HadGEM1: both the activity and interannual variability are increased and the eastward propagation, although slower than observed, is much better simulated. While some aspects of the climatology of the Asian summer monsoon are improved in HadGEM1, the upper-level winds are too weak and the simulation of precipitation deteriorates. The dominant modes of monsoon interannual variability are similar in the two models, although in HadCM3 this is linked to SST forcing, while in HadGEM1 internal variability dominates. Overall, analysis of the phenomena considered here indicates that HadGEM1 performs well and, in many important respects, improves upon HadCM3. Together with the improved representation of the mean climate, this improvement in the simulation of atmospheric variability suggests that HadGEM1 provides a sound basis for future studies of climate and climate change.
Resumo:
Palaeoproxy records alone are seldom sufficient to provide a full assessment of regional palaeoclimates. To better understand the possible changes in the Mediterranean climate during the Holocene, a series of palaeoclimate integrations for periods spanning the last 12 000 years have been performed and their results diagnosed. These simulations use the HadSM3 global climate model, which is then dynamically downscaled to approximately 50 km using a consistent regional climate model (HadRM3). Changes in the model’s seasonal-mean surface air temperatures and precipitation are discussed at both global and regional scales, along with the physical mechanisms underlying the changes. It is shown that the global model reproduces many of the large-scale features of the mid-Holocene climate (consistent with previous studies) and that the results suggest that many areas within the Mediterranean region were wetter during winter with a stronger seasonal cycle of surface air temperatures during the early Holocene. This precipitation signal in the regional model is strongest in the in the northeast Mediterranean (near Turkey), consistent with low-level wind patterns and earlier palaeosyntheses. It is, however, suggested that further work is required to fully understand the changes in the winter circulation patterns over the Mediterranean region.
Resumo:
The intensity and distribution of daily precipitation is predicted to change under scenarios of increased greenhouse gases (GHGs). In this paper, we analyse the ability of HadCM2, a general circulation model (GCM), and a high-resolution regional climate model (RCM), both developed at the Met Office's Hadley Centre, to simulate extreme daily precipitation by reference to observations. A detailed analysis of daily precipitation is made at two UK grid boxes, where probabilities of reaching daily thresholds in the GCM and RCM are compared with observations. We find that the RCM generally overpredicts probabilities of extreme daily precipitation but that, when the GCM and RCM simulated values are scaled to have the same mean as the observations, the RCM captures the upper-tail distribution more realistically. To compare regional changes in daily precipitation in the GHG-forced period 2080-2100 in the GCM and the RCM, we develop two methods. The first considers the fractional changes in probability of local daily precipitation reaching or exceeding a fixed 15 mm threshold in the anomaly climate compared with the control. The second method uses the upper one-percentile of the control at each point as the threshold. Agreement between the models is better in both seasons with the latter method, which we suggest may be more useful when considering larger scale spatial changes. On average, the probability of precipitation exceeding the 1% threshold increases by a factor of 2.5 (GCM and RCM) in winter and by I .7 (GCM) or 1.3 (RCM) in summer.