2 resultados para RED WINES
em CentAUR: Central Archive University of Reading - UK
Resumo:
White wines are generally low in polyphenol content as compared to red wines. However, Champagne wines have been shown to contain relatively high amounts of phenolic acids that may exert protective cellular actions in vivo. In this study, we have investigated the potential neuroprotective effects of Champagne wine extracts, and individual phenolics present in these extracts, against peroxynitrite-induced injury. Organic and aqueous Champagne wine extracts exhibited potent neuroprotective activity against peroxynitrite-induced injury at low concentrations (0.1 mu g/mL). This protection appeared to be in part due to the cellular actions of individual components found in the organic extracts, notably tyrosol, caffeic acid, and gallic acid. These phenolics were observed to exert potent neuroprotection at concentrations between 0.1 and 10 mu M. Together, these data suggest that polyphenols present in Champagne wine may induce a neuroprotective effect against oxidative neuronal injury.
Resumo:
Epidemiological studies have suggested an inverse correlation between red wine consumption and the incidence of cardiovascular and neurodegenerative disorders. Although white wines are generally low in polyphenol content as compared to red wines, champagne has been shown to contain relatively high amounts of phenolic acids that may exert protective cellular actions in vivo. In this study, we have investigated the potential cardioprotective and neuroprotective effects of champagne. Our data suggest that a daily moderate consumption of champagne may improve vascular performance via the delivery of phenolic constituents capable of improving NO bioavailability and the modulation of metalloproteinase. Moreover, champagne intervention significantly increased spatial working memory in aged animals, whilst no improvement was observed in the presence of alcohol. Together, these data indicate that polyphenols present in champagne may induce cardioprotective and neuroprotective effects, delaying the onset of degenerative disorders.