16 resultados para RBCL SEQUENCE ANALYSES
em CentAUR: Central Archive University of Reading - UK
Resumo:
The order Fabales, including Leguminosae, Polygalaceae, Quillajaceae and Surianaceae, represents a novel hypothesis emerging from angiosperm molecular phylogenies. Despite good support for the order, molecular studies to date have suggested contradictory, poorly supported interfamilial relationships. Our reappraisal of relationships within Fabales addresses past taxon sampling deficiencies, and employs parsimony and Bayesian approaches using sequences from the plastid regions rbcL (166 spp.) and matK (78 spp.). Five alternative hypotheses for interfamilial relationships within Fabales were recovered. The Shimodaira-Hasegawa test found the likelihood of a resolved topology significantly higher than the one calculated for a polytomy, but did not favour any of the alternative hypotheses of relationship within Fabales. In the light of the morphological evidence available and the comparative behavior of rbcL and matK, the topology recovering Polygalaceae as sister to the rest of the order Fabales with Leguminosae more closely related to Quillajaceae + Surianaceae, is considered the most likely hypothesis of interfamilial relationships of the order. Dating of selected crown clades in the Fabales phylogeny using penalized likelihood suggests rapid radiation of the Leguminosae, Polygalaceae, and (Quillajaceae + Surianaceae) crown clades.
Resumo:
In a study looking at the culturable, aerobic Actinobacteria associated with the human gastrointestinal tract, the vast majority of isolates obtained from dried human faeces belonged to the genus Bacillus and related bacteria. A total of 124 isolates were recovered from the faeces of 10 healthy adult donors. 16S rRNA gene sequence analyses showed the majority belonged to the families Bacillaceae (n = 81) and Paenibacillaceae (n = 3), with Bacillus species isolated from all donors. Isolates tentatively identified as Bacillus clausii (n = 32) and B. licheniformis (n = 28) were recovered most frequently, with the genera Lysinibacillus, Ureibacillus, Oceanobacillus, Ornithinibacillus and Virgibacillus represented in some donors. Phenotypic data confirmed the identities of isolates belonging to well-characterized species. Representatives of the phylum Actinobacteria were recovered in much lower numbers (n = 11). Many of the bacilli exhibited antimicrobial activity against one or more strains of Clostridium difficile, C. perfringens, Listeria monocytogenes and Staphylococcus aureus, with some (n = 12) found to have no detectable cytopathic effect on HEp-2 cells. This study has revealed greater diversity within gut-associated aerobic spore-formers than previous studies, and suggests that bacilli with potential as probiotics could be isolated from the human gut.
Resumo:
Treponema have been implicated recently in the pathogenesis of digital dermatitis (DID) and contagious ovine digital dermatitis (CODD) that are infectious diseases of bovine and ovine foot tissues, respectively. Previous analyses of treponemal 16S rDNA sequences, PCR-amplified directly from DID or CODD lesions, have suggested relatedness of animal Treponema to some human oral Treponema species isolated from periodontal tissues. In this study a range of adhesion and virulence-related properties of three animal Treponema isolates have been compared with representative human oral strains of Treponema denticola and Treponema vincentii. In adhesion assays using biotinylated treponemal cells, T denticola cells bound in consistently higher numbers to fibronectin, laminin, collagen type 1, gelatin, keratin and lactoferrin than did T. vincentii or animal Treponema isolates. However, animal DID strains adhered to fibrinogen at equivalent or greater levels than T denticola. All Treponema strains bound to the amino-terminal heparin l/fibrin I domain of fibronectin. 16S rDNA sequence analyses placed ovine strain UB1090 and bovine strain UB1467 within a cluster that was phylogenetically related to T vincentii, while ovine strain UB1466 appeared more closely related to T denticola. These observations correlated with phenotypic properties. Thus, T denticola ATCC 35405, GM-1, and Treponema UB1466 had similar outer-membrane protein profiles, produced chymotrypsin-like protease (CTLP), trypsin-like protease and high levels of proline iminopeptidase, and co-aggregated with human oral bacteria Porphyromonas gingivalis and Streptococcus crista. Conversely, T vincentii ATCC 35580, D2A-2, and animal strains UB1090 and UB1467 did not express CTLP or trypsin-like protease and did not co-aggregate with P. gingivalis or S. crista. Taken collectively, these results suggest that human oral-related Treponema have broad host specificity and that similar control or preventive strategies might be developed for human and animal Treponema-associated infections.
Resumo:
Background Polygalacturonase-inhibiting proteins (PGIPs) are leucine-rich repeat (LRR) plant cell wall glycoproteins involved in plant immunity. They are typically encoded by gene families with a small number of gene copies whose evolutionary origin has been poorly investigated. Here we report the complete characterization of the full complement of the pgip family in soybean (Glycine max [L.] Merr.) and the characterization of the genomic region surrounding the pgip family in four legume species. Results BAC clone and genome sequence analyses showed that the soybean genome contains two pgip loci. Each locus is composed of three clustered genes that are induced following infection with the fungal pathogen Sclerotinia sclerotiorum (Lib.) de Bary, and remnant sequences of pgip genes. The analyzed homeologous soybean genomic regions (about 126 Kb) that include the pgip loci are strongly conserved and this conservation extends also to the genomes of the legume species Phaseolus vulgaris L., Medicago truncatula Gaertn. and Cicer arietinum L., each containing a single pgip locus. Maximum likelihood-based gene trees suggest that the genes within the pgip clusters have independently undergone tandem duplication in each species. Conclusions The paleopolyploid soybean genome contains two pgip loci comprised in large and highly conserved duplicated regions, which are also conserved in bean, M. truncatula and C. arietinum. The genomic features of these legume pgip families suggest that the forces driving the evolution of pgip genes follow the birth-and-death model, similar to that proposed for the evolution of resistance (R) genes of NBS-LRR-type.
Resumo:
Although premature infants are increasingly surviving the neonatal period, up to one-third develop bronchopulmonary dysplasia (BPD). Despite evidence that bacterial colonization of the neonatal respiratory tract by certain bacteria may be a risk factor in BPD development, little is known about the role these bacteria play. The aim of this study was to investigate the use of culture-independent molecular profiling methodologies to identify potential etiological agents in neonatal airway secretions. This study used terminal restriction fragment length polymorphism (T-RFLP) and clone sequence analyses to characterize bacterial species in endo-tracheal (ET) aspirates from eight intubated pre-term infants. A wide range of different bacteria was identified in the samples. Forty-seven T-RF band lengths were resolved in the sample set, with a range of 0-15 separate species in each patient. Clone sequence analyses confirmed the identity of individual species detected by T-RFLP. We speculate that the identification of known opportunistic pathogens including S. aureus, Enterobacter sp., Moraxella catarrhalis, Pseudomonas aeruginosa and Streptococcus sp., within the airways of pre-term infants, might be causally related to the subsequent development of BPD. Further, we suggest that culture-independent techniques, such as T-RFLP, hold important potential for the characterization of neonatal conditions, such as BPD.
Resumo:
A sample of caecal effluent was obtained from a female patient who had undergone a routine colonoscopic examination. Bacteria were isolated anaerobically from the sample, and screened against the remaining filtered caecal effluent in an attempt to isolate bacteriophages (phages). A lytic phage, named KLPN1, was isolated on a strain identified as Klebsiella pneumoniae subsp. pneumoniae (capsular type K2, rmpA+). This Siphoviridae phage presents a rosette-like tail tip and exhibits depolymerase activity, as demonstrated by the formation of plaque-surrounding haloes that increased in size over the course of incubation. When screened against a panel of clinical isolates of K. pneumoniae subsp. pneumoniae, phage KLPN1 was shown to infect and lyse capsular type K2 strains, though it did not exhibit depolymerase activity on such hosts. The genome of KLPN1 was determined to be 49,037 bp (50.53 %GC) in length, encompassing 73 predicted ORFs, of which 23 represented genes associated with structure, host recognition, packaging, DNA replication and cell lysis. On the basis of sequence analyses, phages KLPN1 (GenBank: KR262148) and 1513 (a member of the family Siphoviridae, GenBank: KP658157) were found to be two new members of the genus “Kp36likevirus”.
Resumo:
The monophyly of the Peltophorum group, one of nine informal groups recognized by Polhill in the Caesalpinieae, was tested using sequence data from the trnL-F, rbcL, and rps16 regions of the chloroplast genome. Exemplars were included from all 16 genera of the Peltophorum group, and from 15 genera representing seven of the other eight informal groups in the tribe. The data were analyzed separately and in combined analyses using parsimony and Bayesian methods. The analysis method had little effect on the topology of well-supported relationships. The molecular data recovered a generally well-supported phylogeny with many intergeneric relationships resolved. Results show that the Peltophorum group as currently delimited is polyphyletic, but that eight genera plus one undescribed genus form a core Peltophorum group, which is referred to here as the Peltophorum group sensu stricto. These genera are Bussea, Conzattia, Colvillea, Delonix, Heteroflorum (inedit.), Lemuropisum, Parkinsonia, Peltophorum, and Schizolobium. The remaining eight genera of the Peltophorum group s.l. are distributed across the Caesalpinieae. Morphological support for the redelimited Peltophorum group and the other recovered clades was assessed, and no unique synapomorphy was found for the Peltophorum group s.s. A proposal for the reclassification of the Peltophorum group s.l. is presented.
Resumo:
Inter-simple sequence repeat (ISSR) analysis and aggressiveness assays were used to investigate genetic variability within a global collection of Fusarium culmorum isolates. A set of four ISSR primers were tested, of which three primers amplified a total of 37 bands out of which 30 (81%) were polymorphic. The intraspecific diversity was high, ranging from four to 28 different ISSR genotypes for F. culmorum depending on the primer. The combined analysis of ISSR data revealed 59 different genotypes clustered into seven distinct clades amongst 75 isolates of F. culmorum examined. All the isolates were assayed to test their aggressiveness on a winter wheat cv. 'Armada'. A significant quantitative variation for aggressiveness was found among the isolates. The ISSR and aggressiveness variation existed on a macro- as well as micro-geographical scale. The data suggested a long-range dispersal of F. culmorum and indicated that this fungus may have been introduced into Canada from Europe. In addition to the high level of intraspecific diversity observed in F. culmorum, the index of multilocus association calculated using ISSR data indicated that reproduction in F. culmorum cannot be exclusively clonal and recombination is likely to occur.
Resumo:
Monomer-sequence information in synthetic copolyimides can be recognised by tweezer-type molecules binding to adjacent triplet-sequences on the polymer chains. In the present paper different tweezer-molecules are found to have different sequence-selectivities, as demonstrated in solution by 1H NMR spectroscopy and in the solid state by single crystal X-ray analyses of tweezer-complexes with linear and macrocyclic oligo-imides. This work provides clear-cut confirmation of polyimide chain-folding and adjacent-tweezer-binding. It also reveals a new and entirely unexpected mechanism for sequence-recognition which, by analogy with a related process in biomolecular information processing, may be termed "frameshift-reading". The ability of one particular tweezer-molecule to detect, with exceptionally high sensitivity, long-range sequence-information in chain-folding aromatic copolyimides, is readily explained by this novel process.
Resumo:
Phylogenetic relationships in the largely South African genus Muraltia (Polygalaceae) are assessed based on DNA sequence data (nuclear ribosomal ITS, plastid atpB-rbcL spacer, trnL intron, and trnL-F spacer) for 73 of the 117 currently recognized species in the genus. The previously recognised subgenus Muraltia is monophyletic, but the South African endemic genus Nylandtia is embedded in Muraltia subgenus Psiloclada. Subgenus Muraltia is found to be sister to subgenus Psiloclada. Estimates show the beginning of diversification of the two subgenera in the early Miocene (Psiloclada, 19.3+/-3.4 Ma; Muraltia, 21.0+/-3.5 Ma) pre-dating the establishment of the Benguela current (intermittent in the middle to late Oligocene and markedly intensifying in the late Miocene), and summer-dry climate in the Cape region. However, the later increase in species numbers is contemporaneous with these climatic phenomena. Results of dispersal-vicariance analyses indicate that major clades in Muraltia diversified from the southwestern and northwestern Cape, where most of the species are found today.
Resumo:
A novel type of tweezer molecule containing electron-rich 2-pyrenyloxy arms has been designed to exploit intramolecular hydrogen bonding in stabilising a preferred conformation for supramolecular complexation to complementary sequences in aromatic copolyimides. This tweezer-conformation is demonstrated by single-crystal X-ray analyses of the tweezer molecule itself and of its complex with an aromatic diimide model-compound. In terms of its ability to bind selectively to polyimide chains, the new tweezer molecule shows very high sensitivity to sequence effects. Thus, even low concentrations of tweezer relative to diimide units (<2.5 mol%) are sufficient to produce dramatic, sequence-related splittings of the pyromellitimide proton NMR resonances. These induced resonance-shifts arise from ring-current shielding of pyromellitimide protons by the pyrenyloxy arms of the tweezer-molecule, and the magnitude of such shielding is a function of the tweezer-binding constant for any particular monomer sequence. Recognition of both short-range and long-range sequences is observed, the latter arising from cumulative ring-current shielding of diimide protons by tweezer molecules binding at multiple adjacent sites on the copolymer chain.
Resumo:
The phylogenetics of Sternbergia (Amaryllidaceae) were studied using DNA sequences of the plastid ndhF and matK genes and nuclear internal transcribed spacer (ITS) ribosomal region for 38, 37 and 32 ingroup and outgroup accessions, respectively. All members of Sternbergia were represented by at least one accession, except S. minoica and S. schubertii, with additional taxa from Narcissus and Pancratium serving as principal outgroups. Sternbergia was resolved and supported as sister to Narcissus and composed of two primary subclades: S. colchiciflora sister to S. vernalis, S. candida and S. clusiana, with this clade in turn sister to S. lutea and its allies in both Bayesian and bootstrap analyses. A clear relationship between the two vernal flowering members of the genus was recovered, supporting the hypothesis of a single origin of vernal flowering in Sternbergia. However, in the S. lutea complex, the DNA markers examined did not offer sufficient resolving power to separate taxa, providing some support for the idea that S. sicula and S. greuteriana are conspecific with S. lutea
Resumo:
The different triplet sequences in high molecular weight aromatic copolyimides comprising pyromellitimide units ("I") flanked by either ether-ketone ("K") or ether-sulfone residues ("S") show different binding strengths for pyrene-based tweezer-molecules. Such molecules bind primarily to the diimide unit through complementary π-π-stacking and hydrogen bonding. However, as shown by the magnitudes of 1H NMR complexation shifts and tweezer-polymer binding constants, the triplet "SIS" binds tweezer-molecules more strongly than "KIS" which in turn bind such molecules more strongly than "KIK". Computational models for tweezer-polymer binding, together with single-crystal X-ray analyses of tweezer-complexes with macrocyclic ether-imides, reveal that the variations in binding strength between the different triplet sequences arise from the different conformational preferences of aromatic rings at diarylketone and diarylsulfone linkages. These preferences determine whether or not chain-folding and secondary π−π-stacking occurs between the arms of the tweezermolecule and the 4,4'-biphenylene units which flank the central diimide residue.
Resumo:
Relationships between the four families placed in the angiosperm order Fabales (Leguminosae, Polygalaceae, Quillajaceae, Surianaceae) were hitherto poorly resolved. We combine published molecular data for the chloroplast regions matK and rbcL with 66 morphological characters surveyed for 73 ingroup and two outgroup species, and use Parsimony and Bayesian approaches to explore matrices with different missing data. All combined analyses using Parsimony recovered the topology Polygalaceae (Leguminosae (Quillajaceae + Surianaceae)). Bayesian analyses with matched morphological and molecular sampling recover the same topology, but analyses based on other data recover a different Bayesian topology: ((Polygalaceae + Leguminosae) (Quillajaceae + Surianaceae)). We explore the evolution of floral characters in the context of the more consistent topology: Polygalaceae (Leguminosae (Quillajaceae + Surianaceae)). This reveals synapomorphies for (Leguminosae (Quillajaceae + Surianaceae)) as the presence of free filaments and marginal/ventral placentation, for (Quillajaceae + Surianaceae) as pentamery and apocarpy, and for Leguminosae the presence of an abaxial median sepal and unicarpellate gynoecium. An octamerous androecium is synapomorphic for Polygalaceae. The development of papilionate flowers, and the evolutionary context in which these phenotypes appeared in Leguminosae and Polygalaceae, shows that the morphologies are convergent rather than synapomorphic within Fabales.
Resumo:
BACKGROUND: Mealybugs (Hemiptera: Coccoidea: Pseudococcidae) are key vectors of badnaviruses, including Cacao Swollen Shoot Virus (CSSV) the most damaging virus affecting cacao (Theobroma cacao L.). The effectiveness of mealybugs as virus vectors is species dependent and it is therefore vital that CSSV resistance breeding programmes in cacao incorporate accurate mealybug identification. In this work the efficacy of a CO1-based DNA barcoding approach to species identification was evaluated by screening a range of mealybugs collected from cacao in seven countries. RESULTS: Morphologically similar adult females were characterised by scanning electron microscopy and then, following DNA extraction, were screened with CO1 barcoding markers. A high degree of CO1 sequence homology was observed for all 11 individual haplotypes including those accessions from distinct geographical regions. This has allowed for the design of a High Resolution Melt (HRM) assay capable of rapid identification of the commonly encountered mealybug pests of cacao. CONCLUSIONS: HRM Analysis (HRMA) readily differentiated between mealybug pests of cacao that can not necessarily be identified by conventional morphological analysis. This new approach, therefore, has potential to facilitate breeding for resistance to CSSV and other mealybug transmitted diseases.