43 resultados para RAINY-SEASON
em CentAUR: Central Archive University of Reading - UK
Resumo:
There is a pressing need for good rainfall data for the African continent both for humanitarian and climatological purposes. Given the sparseness of ground-based observations, one source of rainfall information is Numerical Weather Prediction (NWP) model outputs. The aim of this article is to investigate the quality of two NWP products using Ethiopia as a test case. The two products evaluated are the ERA-40 and NCEP reanalysis rainfall products. Spatial, seasonal and interannual variability of rainfall have been evaluated for Kiremt (JJAS) and Belg (FMAM) seasons at a spatial scale that reflects the local variability of the rainfall climate using a method which makes optimum use of sparse gauge validation data. We found that the spatial pattern of the rainfall climatology is captured well by both models especially for the main rainy season Kiremt. However, both models tend to overestimate the mean rainfall in the northwest, west and central regions but underestimate in the south and east. The overestimation is greater for NCEP in Belg season and greater for ERA-40 in Kiremt Season. ERA-40 captures the annual cycle over most of the country better than NCEP, but strongly exaggerates the Kiremt peak in the northwest and west. The overestimation in Kiremt appears to have been reduced since the assimilation of satellite data increased around 1990. For both models the interannual variability is less well captured than the spatial and seasonal variability. Copyright © 2008 Royal Meteorological Society
Resumo:
A regional climate model is used to investigate changes in Israel and Jordan precipitation at the end of the 21st century on daily to monthly timescales. The model predicts that this region will get significantly drier at the peak of the rainy season, reflecting a reduction in both the frequency and duration of rainy events. These changes may be associated with a reduction in the strength of the Mediterranean storm track
Resumo:
The dependence of much of Africa on rain fed agriculture leads to a high vulnerability to fluctuations in rainfall amount. Hence, accurate monitoring of near-real time rainfall is particularly useful, for example in forewarning possible crop shortfalls in drought-prone areas. Unfortunately, ground based observations are often inadequate. Rainfall estimates from satellite-based algorithms and numerical model outputs can fill this data gap, however rigorous assessment of such estimates is required. In this case, three satellite based products (NOAA-RFE 2.0, GPCP-1DD and TAMSAT) and two numerical model outputs (ERA-40 and ERA-Interim) have been evaluated for Uganda in East Africa using a network of 27 rain gauges. The study focuses on the years 2001 to 2005 and considers the main rainy season (February to June). All data sets were converted to the same temporal and spatial scales. Kriging was used for the spatial interpolation of the gauge data. All three satellite products showed similar characteristics and had a high level of skill that exceeded both model outputs. ERA-Interim had a tendency to overestimate whilst ERA-40 consistently underestimated the Ugandan rainfall.
Resumo:
Living up to its reputation as a highly variable climate system, the West African Monsoon (WAM) 2012 contrasted strikingly with the previous year. In 2011, the West African rainy season was delayed, patchy, and irregular. In 2012, whilst it was anomalously wet in many area, the Guinea coastal countries and some crucial agricultural regions remained very dry, persisting from the previous year. As a result, 2012 generated the third big food crisis to hit the region in the last seven years. The 2012 WAM forecast, observed climate conditions and the ongoing socio-economic implications for the region are reviewed here.
Resumo:
Two different TAMSAT (Tropical Applications of Meteorological Satellites) methods of rainfall estimation were developed for northern and southern Africa, based on Meteosat images. These two methods were used to make rainfall estimates for the southern rainy season from October 1995 to April 1996. Estimates produced by both TAMSAT methods and estimates produced by the CPC (Climate Prediction Center) method were then compared with kriged data from over 800 raingauges in southern Africa. This shows that operational TAMSAT estimates are better over plateau regions, with 59% of estimates within one standard error (s.e.) of the kriged rainfall. Over mountainous regions the CPC approach is generally better, although all methods underestimate and give only 40% of estimates within 1 s.e. The two TAMSAT methods show little difference across a whole season, but when looked at in detail the northern method gives unsatisfactory calibrations. The CPC method does have significant overall improvements by building in real-time raingauge data, but only where sufficient raingauges are available.
Resumo:
Four stalagmites covering the last 7.0 ka were sampled on Socotra, an island in the northern Indian Ocean to investigate the evolution of the northeast Indian Ocean Monsoon (IOM) since the mid Holocene. On Socotra, rain is delivered at the start of the southwest IOM in May–June and at the start of the northeast IOM from September to December. The Haggeher Mountains act as a barrier forcing precipitation brought by the northeast winds to fall preferentially on the eastern side of the island, where the studied caves are located. δ18O and δ13C and Mg/Ca and Sr/Ca signals in the stalagmites reflect precipitation amounts brought by the northeast winds. For stalagmite STM6, this amount effect is amplified by kinetic effects during calcite deposition. Combined interpretation of the stalagmites' signals suggest a weakening of the northeast precipitation between 6.0 and 3.8 ka. After 3.8 ka precipitation intensities remain constant with two superimposed drier periods, between 0 and 0.6 ka and from 2.2 to 3.8 ka. No link can be established with Greenland ice cores and with the summer IOM variability. In contrast to the stable northeast rainy season suggested by the records in this study, speleothem records from western Socotra indicate a wettening of the southwest rainy season on Socotra after 4.4 ka. The local wettening of western Socotra could relate to a more southerly path (more over the Indian Ocean) taken by the southwest winds. Stalagmite STM5, sampled at the fringe between both rain areas displays intermediate δ18O values. After 6.2 ka, similar precipitation changes are seen between eastern Socotra and northern Oman indicating that both regions are affected similarly by the monsoon. Different palaeoclimatologic records from the Arabian Peninsula currently located outside the ITCZ migration pathway display an abrupt drying around 6 ka due to their disconnection from the southwest rain influence. Records that are nowadays still receiving rain by the southwest winds, suggest a more gradual drying reflecting the weakening of the southwest monsoon.
Resumo:
The physiological performance of four cacao clones was examined under three artificial shade regimes over the course of a year in Ghana. Plants under light shade had significantly higher photosynthetic rates in the rainy seasons whereas in the dry season there was a trend of higher photosynthetic rates under heavy shade. The results imply that during the wet seasons light was the main limiting factor to photosynthesis whereas in the dry season vapour pressure deficit was the major factor limiting photosynthesis through stomatal regulation. Leaf area was generally lower under heavier shade but the difference between shade treatments varied between clones. Such differences in leaf area allocation appeared to underlie genotypic differences in final biomass production in response to shade. The results suggest that shade for young cacao should be provided based on the current ambient environment and genotype.
Resumo:
The global radiation balance of the atmosphere is still poorly observed, particularly at the surface. We investigate the observed radiation balance at (1) the surface using the ARM Mobile Facility in Niamey, Niger, and (2) the top of the atmosphere (TOA) over West Africa using data from the Geostationary Earth Radiation Budget (GERB) instrument on board Meteosat-8. Observed radiative fluxes are compared with predictions from the global numerical weather prediction (NWP) version of the Met Office Unified Model (MetUM). The evaluation points to major shortcomings in the NWP model's radiative fluxes during the dry season (December 2005 to April 2006) arising from (1) a lack of absorbing aerosol in the model (mineral dust and biomass burning aerosol) and (2) a poor specification of the surface albedo. A case study of the major Saharan dust outbreak of 6–12 March 2006 is used to evaluate a parameterization of mineral dust for use in the NWP models. The model shows good predictability of the large-scale flow out to 4–5 days with the dust parameterization providing reasonable dust uplift, spatial distribution, and temporal evolution for this strongly forced dust event. The direct radiative impact of the dust reduces net downward shortwave (SW) flux at the surface (TOA) by a maximum of 200 W m−2 (150 W m−2), with a SW heating of the atmospheric column. The impacts of dust on terrestrial radiation are smaller. Comparisons of TOA (surface) radiation balance with GERB (ARM) show the “dusty” forecasts reduce biases in the radiative fluxes and improve surface temperatures and vertical thermodynamic structure.
Resumo:
Variability in aspects of the hydrological cycle over the Europe-Atlantic region during the summer season is analysed for the period 1979-2007, using observational estimates, reanalyses and climate model simulations. Warming and moistening trends are evident in observations and models although decadal changes in water vapour are not well represented by reanalyses, including the new European Centre for Medium Range Weather Forecasts (ECMWF) Interim reanalysis. Over the north Atlantic and northern Europe, observed water vapour trends are close to that expected from the temperature trends and Clausius-Clapeyron equation (7% K-1), larger than the model simulations. Precipitation over Europe is dominated by large-scale dynamics with positive phases of the North Atlantic Oscillation coinciding with drier conditions over north Europe and wetter conditions over the Mediterranean region. Evaporation trends over Europe are positive in reanalyses and models, especially for the Mediterranean region (1-3% per decade in reanalyses and climate models). Over the north Atlantic, declining precipitation combined with increased moisture contributed to an apparent rise in water vapour residence time. Maximum precipitation minus evaporation over the north Atlantic occurred during summer 1991, declining thereafter.
Resumo:
Ozone and its precursors were measured on board the Facility for Airborne Atmospheric Measurements (FAAM) BAe 146 Atmospheric Research Aircraft during the monsoon season 2006 as part of the African Monsoon Multidisciplinary Analysis (AMMA) campaign. One of the main features observed in the west African boundary layer is the increase of the ozone mixing ratios from 25 ppbv over the forested area (south of 12° N) up to 40 ppbv over the Sahelian area. We employ a two-dimensional (latitudinal versus vertical) meteorological model coupled with an O3-NOx-VOC chemistry scheme to simulate the distribution of trace gases over West Africa during the monsoon season and to analyse the processes involved in the establishment of such a gradient. Including an additional source of NO over the Sahelian region to account for NO emitted by soils we simulate a mean NOx concentration of 0.7 ppbv at 16° N versus 0.3 ppbv over the vegetated region further south in reasonable agreement with the observations. As a consequence, ozone is photochemically produced with a rate of 0.25 ppbv h−1 over the vegetated region whilst it reaches up to 0.75 ppbv h−1 at 16° N. We find that the modelled gradient is due to a combination of enhanced deposition to vegetation, which decreases the ozone levels by up to 11 pbbv, and the aforementioned enhanced photochemical production north of 12° N. The peroxy radicals required for this enhanced production in the north come from the oxidation of background CO and CH4 as well as from VOCs. Sensitivity studies reveal that both the background CH4 and partially oxidised VOCs, produced from the oxidation of isoprene emitted from the vegetation in the south, contribute around 5–6 ppbv to the ozone gradient. These results suggest that the northward transport of trace gases by the monsoon flux, especially during nighttime, can have a significant, though secondary, role in determining the ozone gradient in the boundary layer. Convection, anthropogenic emissions and NO produced from lightning do not contribute to the establishment of the discussed ozone gradient.
Resumo:
The aim of this work was to investigate differences among genotypes in post-anthesis root growth and distribution of modern UK winter wheat cultivars, and the effects of fungicide applications. Post-anthesis root growth of up to six cultivars of winter wheat (Triticum aestivum L.), given either one or three applications of fungicide, was studied in field experiments during two seasons. Total root mass remained unchanged between GS63 (anthesis) and GS85, but root length increased significantly from 14.7 to 31.4 km m(2) in one season. Overall, there was no evidence for a decline in either root mass or length during grain filling. Root mass as a proportion of total plant mass was about 0.05 at GS85. There were significant differences among cultivars in root length and mass especially below 30 cm. Malacca had the smallest root length and Savannah the largest, and Shamrock had a significantly larger root system below 40 cm in both seasons. Fungicide applied at ear emergence had no significant effect on root mass in either season but increased root length (P < 0.01) in the more disease-prone season. By maintaining a green canopy for longer, fungicide applied at flag leaf emergence may have resulted in delayed senescence of the root system and contributed to the post-anthesis maintenance of root mass and length.
Resumo:
Field experiments were conducted over 3 years to study the effect of applying triazole and strobilurin fungicides on the bread-making quality of Malacca winter wheat. Averaged over all years the application of a fungicide programme increased yields, particularly when strobilurin fungicides were applied. Reductions in protein concentration, sulphur concentration, Hageberg failing number and loaf volumes also occurred as the amount of fungicide applied increased. However, there were no deleterious effects of fungicide application on sodium dodecyl sulphate (SDS) sedimentation volumes, N:S ratios or dough theology. Effects of fungicide application on bread-making quality were not product specific. Therefore, it appears that new mechanisms to explain strobilurin effects on bread-making quality do not need to be invoked. Where reductions in protein concentration did occur they could be compensated for by a late-season application of nitrogen either as granular ammonium nitrate at flag leaf emergence or foliar urea at anthesis. These applications, however, sometimes increased the N:S ratio of the extracted flour and failed to improve loaf volume. Multiple regression analysis revealed that main effects of year, flour protein concentration and N:S ratio could explain 93% of the variance in loaf volume caused by season, fungicide and nitrogen treatments. However, an equally good fit was achieved by just including sulphur concentration with year. (C) 2004 Elsevier Ltd. All rights reserved.