30 resultados para R1 - General Regional Economics
em CentAUR: Central Archive University of Reading - UK
Resumo:
A low resolution coupled ocean-atmosphere general circulation model OAGCM is used to study the characteristics of the large scale ocean circulation and its climatic impacts in a series of global coupled aquaplanet experiments. Three configurations, designed to produce fundamentally different ocean circulation regimes, are considered. The first has no obstruction to zonal flow, the second contains a low barrier that blocks zonal flow in the ocean at all latitudes, creating a single enclosed basin, whilst the third contains a gap in the barrier to allow circumglobal flow at high southern latitudes. Warm greenhouse climates with a global average air surface temperature of around 27C result in all cases. Equator to pole temperature gradients are shallower than that of a current climate simulation. Whilst changes in the land configuration cause regional changes in temperature, winds and rainfall, heat transports within the system are little affected. Inhibition of all ocean transport on the aquaplanet leads to a reduction in global mean surface temperature of 8C, along with a sharpening of the meridional temperature gradient. This results from a reduction in global atmospheric water vapour content and an increase in tropical albedo, both of which act to reduce global surface temperatures. Fitting a simple radiative model to the atmospheric characteristics of the OAGCM solutions suggests that a simpler atmosphere model, with radiative parameters chosen a priori based on the changing surface configuration, would have produced qualitatively different results. This implies that studies with reduced complexity atmospheres need to be guided by more complex OAGCM results on a case by case basis.
Resumo:
Studies of construction labour productivity have revealed that limited predictability and multi-agent social complexity make long-range planning of construction projects extremely inaccurate. Fire-fighting, a cultural feature of construction project management, social and structural diversity of involved permanent organizations, and structural temporality all contribute towards relational failures and frequent changes. The main purpose of this paper is therefore to demonstrate that appropriate construction planning may have a profound synergistic effect on structural integration of a project organization. Using the general systems theory perspective it is further a specific objective to investigate and evaluate organizational effects of changes in planning and potentials for achieving continuous project-organizational synergy. The newly developed methodology recognises that planning should also represent a continuous, improvement-leading driving force throughout a project. The synergistic effect of the process planning membership duality fostered project-wide integration, eliminated internal boundaries, and created a pool of constantly upgrading knowledge. It maintained a creative environment that resulted in a number of process-related improvements from all parts of the organization. As a result labour productivity has seen increases of more than 30%, profits have risen from an average of 12% to more than 18%, and project durations have been reduced by several days.
Resumo:
A photochemical trajectory model has been used to simulate the chemical evolution of air masses arriving at the TORCH field campaign site in the southern UK during late July and August 2003, a period which included a widespread and prolonged photochemical pollution episode. The model incorporates speciated emissions of 124 nonmethane anthropogenic VOC and three representative biogenic VOC, coupled with a comprehensive description of the chemistry of their degradation. A representation of the gas/aerosol absorptive partitioning of ca. 2000 oxygenated organic species generated in the Master Chemical Mechanism (MCM v3.1) has been implemented, allowing simulation of the contribution to organic aerosol (OA) made by semi- and non-volatile products of VOC oxidation; emissions of primary organic aerosol (POA) and elemental carbon (EC) are also represented. Simulations of total OA mass concentrations in nine case study events (optimised by comparison with observed hourly-mean mass loadings derived from aerosol mass spectrometry measurements) imply that the OA can be ascribed to three general sources: (i) POA emissions; (ii) a '' ubiquitous '' background concentration of 0.7 mu g m(-3); and (iii) gas-to-aerosol transfer of lower volatility products of VOC oxidation generated by the regional scale processing of emitted VOC, but with all partitioning coefficients increased by a species-independent factor of 500. The requirement to scale the partitioning coefficients, and the implied background concentration, are both indicative of the occurrence of chemical processes within the aerosol which allow the oxidised organic species to react by association and/or accretion reactions which generate even lower volatility products, leading to a persistent, non-volatile secondary organic aerosol (SOA). The contribution of secondary organic material to the simulated OA results in significant elevations in the simulated ratio of organic carbon (OC) to EC, compared with the ratio of 1.1 assigned to the emitted components. For the selected case study events, [OC]/[EC] is calculated to lie in the range 2.7-9.8, values which are comparable with the high end of the range reported in the literature.
Resumo:
In addition to projected increases in global mean sea level over the 21st century, model simulations suggest there will also be changes in the regional distribution of sea level relative to the global mean. There is a considerable spread in the projected patterns of these changes by current models, as shown by the recent Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment (AR4). This spread has not reduced from that given by the Third Assessment models. Comparison with projections by ensembles of models based on a single structure supports an earlier suggestion that models of similar formulation give more similar patterns of sea level change. Analysing an AR4 ensemble of model projections under a business-as-usual scenario shows that steric changes (associated with subsurface ocean density changes) largely dominate the sea level pattern changes. The relative importance of subsurface temperature or salinity changes in contributing to this differs from region to region and, to an extent, from model-to-model. In general, thermosteric changes give the spatial variations in the Southern Ocean, halosteric changes dominate in the Arctic and strong compensation between thermosteric and halosteric changes characterises the Atlantic. The magnitude of sea level and component changes in the Atlantic appear to be linked to the amount of Atlantic meridional overturning circulation (MOC) weakening. When the MOC weakening is substantial, the Atlantic thermosteric patterns of change arise from a dominant role of ocean advective heat flux changes.
Resumo:
To date, a number of studies have focused on the influence of sea surface temperature (SST) on global and regional rainfall variability, with the majority of these focusing on certain ocean basins e.g. the Pacific, North Atlantic and Indian Ocean. In contrast, relatively less work has been done on the influence of the central South Atlantic, particularly in relation to rainfall over southern Africa. Previous work by the authors, using reanalysis data and general circulation model (GCM) experiments, has suggested that cold SST anomalies in the central southern Atlantic Ocean are linked to an increase in rainfall extremes across southern Africa. In this paper we present results from idealised regional climate model (RCM) experiments forced with both positive and negative SST anomalies in the southern Atlantic Ocean. These experiments reveal an unexpected response of rainfall over southern Africa. In particular it was found that SST anomalies of opposite sign can cause similar rainfall responses in the model experiments, with isolated increases in rainfall over central southern Africa as well as a large region of drying over the Mozambique Channel. The purpose of this paper is to highlight this finding and explore explanations for the behaviour of the climate model. It is suggested that the observed changes in rainfall might result from the redistribution of energy (associated with upper level changes to Rossby waves) or, of more concern, model error, and therefore the paper concludes that the results of idealised regional climate models forced with SST anomalies should be viewed cautiously.
Resumo:
The intensity and distribution of daily precipitation is predicted to change under scenarios of increased greenhouse gases (GHGs). In this paper, we analyse the ability of HadCM2, a general circulation model (GCM), and a high-resolution regional climate model (RCM), both developed at the Met Office's Hadley Centre, to simulate extreme daily precipitation by reference to observations. A detailed analysis of daily precipitation is made at two UK grid boxes, where probabilities of reaching daily thresholds in the GCM and RCM are compared with observations. We find that the RCM generally overpredicts probabilities of extreme daily precipitation but that, when the GCM and RCM simulated values are scaled to have the same mean as the observations, the RCM captures the upper-tail distribution more realistically. To compare regional changes in daily precipitation in the GHG-forced period 2080-2100 in the GCM and the RCM, we develop two methods. The first considers the fractional changes in probability of local daily precipitation reaching or exceeding a fixed 15 mm threshold in the anomaly climate compared with the control. The second method uses the upper one-percentile of the control at each point as the threshold. Agreement between the models is better in both seasons with the latter method, which we suggest may be more useful when considering larger scale spatial changes. On average, the probability of precipitation exceeding the 1% threshold increases by a factor of 2.5 (GCM and RCM) in winter and by I .7 (GCM) or 1.3 (RCM) in summer.
Resumo:
Sea-level rise is an important aspect of climate change because of its impact on society and ecosystems. Here we present an intercomparison of results from ten coupled atmosphere-ocean general circulation models (AOGCMs) for sea-level changes simulated for the twentieth century and projected to occur during the twenty first century in experiments following scenario IS92a for greenhouse gases and sulphate aerosols. The model results suggest that the rate of sea-level rise due to thermal expansion of sea water has increased during the twentieth century, but the small set of tide gauges with long records might not be adequate to detect this acceleration. The rate of sea-level rise due to thermal expansion continues to increase throughout the twenty first century, and the projected total is consequently larger than in the twentieth century; for 1990-2090 it amounts to 0.20-0.37 in. This wide range results from systematic uncertainty in modelling of climate change and of heat uptake by the ocean. The AOGCMs agree that sea-level rise is expected to be geographically non-uniform, with some regions experiencing as much as twice the global average, and others practically zero, but they do not agree about the geographical pattern. The lack of agreement indicates that we cannot currently have confidence in projections of local sea- level changes, and reveals a need for detailed analysis and intercomparison in order to understand and reduce the disagreements.
Resumo:
For those portfolio managers who follow a top-down approach to fund management when they are trying to develop a pan-European investment strategy they need to know which are the most important factors affecting property returns, so as to concentrate their management and research efforts accordingly. In order to examine this issue this paper examines the relative importance of country, sector and regional effects in determining property returns across Europe using the largest database of individual property returns currently available. Using annual data over the period 1996 to 2002 for a sample of over 25,000 properties the results show that the country-specific effects dominate sector-specific factors, which in turn dominate the regional-specific factors. This is true even for different sub-sets of countries and sectors. In other words, real estate returns are mainly determined by local (country specific) conditions and are only mildly affected by general European factors. Thus, for those institutional investors contemplating investment into Europe the first level of analysis must be an examination of the individual countries, followed by the prospects of the property sectors within the country and then an assessment of the differences in expected performance between the main city and the rest of the country.
The regional distribution of technological development: evidence from foreign-owned firms in Germany
Resumo:
This article investigates income and population biases in the distribution of aid and decomposes recipients by geographic region. Previous analyses aggregate recipients and assume biases have an equal impact. Results demonstrate that although while a bias towards middle-income and medium-sized countries persists in the full sample, the extent of such biases differs significantly by region.