7 resultados para R-MATRIX METHOD
em CentAUR: Central Archive University of Reading - UK
Resumo:
This paper identifies the indicators of energy efficiency assessment in residential building in China through a wide literature review. Indicators are derived from three main sources: 1) The existing building assessment methods; 2)The existing Chinese standards and technology codes in building energy efficiency; 3)Academia research. As a result, we proposed an indicator list by refining the indicators in the above sources. Identified indicators are weighted by the group analytic hierarchy process (AHP) method. Group AHP method is implemented following key steps: Step 1: Experienced experts are selected to form a group; Step 2: A survey is implemented to collect the individual judgments on the importance of indicators in the group; Step 3: Members’ judgments are synthesized to the group judgments; Step 4: Indicators are weighted by AHP on the group judgments; Step 5: Investigation of consistency estimation shows that the consistency of the judgment matrix is accepted. We believe that the weighted indicators in this paper will provide important references to building energy efficiency assessment.
Resumo:
A method is described for the analysis of deuterated and undeuterated alpha-tocopherol in blood components using liquid chromatography coupled to an orthogonal acceleration time-of-flight (TOF) mass spectrometer. Optimal ionisation conditions for undeuterated (d0) and tri- and hexadeuterated (d3 or d6) alpha-tocopherol standards were found with negative ion mode electrospray ionisation. Each species produced an isotopically resolved single ion of exact mass. Calibration curves of pure standards were linear in the range tested (0-1.5 muM, 0-15 pmol injected). For quantification of d0 and d6 in blood components following a standard solvent extraction, a stable-isotope-labelled internal standard (d3-alpha-tocopherol) was employed. To counter matrix ion suppression effects, standard response curves were generated following identical solvent extraction procedures to those of the samples. Within-day and between-day precision were determined for quantification of d0- and d6-labelled alpha-tocopherol in each blood component and both averaged 3-10%. Accuracy was assessed by comparison with a standard high-performance liquid chromatography (HPLC) method, achieving good correlation (r(2) = 0.94), and by spiking with known concentrations of alpha-tocopherol (98% accuracy). Limits of detection and quantification were determined to be 5 and 50 fmol injected, respectively. The assay was used to measure the appearance and disappearance of deuterium-labelled alpha-tocopherol in human blood components following deuterium-labelled (d6) RRR-alpha-tocopheryl acetate ingestion. The new LC/TOFMS method was found to be sensitive, required small sample volumes, was reproducible and robust, and was capable of high throughput when large numbers of samples were generated. Copyright (C) 2003 John Wiley Sons, Ltd.
Resumo:
The background error covariance matrix, B, is often used in variational data assimilation for numerical weather prediction as a static and hence poor approximation to the fully dynamic forecast error covariance matrix, Pf. In this paper the concept of an Ensemble Reduced Rank Kalman Filter (EnRRKF) is outlined. In the EnRRKF the forecast error statistics in a subspace defined by an ensemble of states forecast by the dynamic model are found. These statistics are merged in a formal way with the static statistics, which apply in the remainder of the space. The combined statistics may then be used in a variational data assimilation setting. It is hoped that the nonlinear error growth of small-scale weather systems will be accurately captured by the EnRRKF, to produce accurate analyses and ultimately improved forecasts of extreme events.
Resumo:
This paper extends the singular value decomposition to a path of matricesE(t). An analytic singular value decomposition of a path of matricesE(t) is an analytic path of factorizationsE(t)=X(t)S(t)Y(t) T whereX(t) andY(t) are orthogonal andS(t) is diagonal. To maintain differentiability the diagonal entries ofS(t) are allowed to be either positive or negative and to appear in any order. This paper investigates existence and uniqueness of analytic SVD's and develops an algorithm for computing them. We show that a real analytic pathE(t) always admits a real analytic SVD, a full-rank, smooth pathE(t) with distinct singular values admits a smooth SVD. We derive a differential equation for the left factor, develop Euler-like and extrapolated Euler-like numerical methods for approximating an analytic SVD and prove that the Euler-like method converges.
Resumo:
PURPOSE: Soy isoflavones may inhibit tumor cell invasion and metastasis via their effects on matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs). The current study investigates the effects of daidzein, R- and S-equol on the invasion of MDA-MB-231 human breast cancer cells and the effects of these compounds on MMP/TIMP expression at the mRNA level. METHODS: The anti-invasive effects of daidzein, R- and S-equol (0, 2.5, 10, 50 μM) on MDA-MB-231 cells were determined using the Matrigel invasion assay following 48-h exposure. Effects on MMP-2, MMP-9, TIMP-1 and TIMP-2 expression were assessed using real-time PCR. Chiral HPLC analysis was used to determine intracellular concentrations of R- and S-equol. RESULTS: The invasive capacity of MDA-MB-231 cells was significantly reduced (by approximately 50-60 %) following treatment with 50 μM daidzein, R- or S-equol. Anti-invasive effects were also observed with R-equol at 2.5 and 10 μM though overall equipotent effects were induced by all compounds. Inhibition of invasion induced by all three compounds at 50 μM was associated with the down-regulation of MMP-2, while none of the compounds tested significantly affected the expression levels of MMP-9, TIMP-1 or TIMP-2 at this concentration. Following exposure to media containing 50 μM R- or S-equol for 48-h intracellular concentrations of R- and S-equol were 4.38 ± 1.17 and 3.22 ± 0.47 nM, respectively. CONCLUSION: Daidzein, R- and S-equol inhibit the invasion of MDA-MB-231 human breast cancer cells in part via the down-regulation of MMP-2 expression, with equipotent effects observed for the parent isoflavone daidzein and the equol enantiomers.
Resumo:
We consider the numerical treatment of second kind integral equations on the real line of the form ∅(s) = ∫_(-∞)^(+∞)▒〖κ(s-t)z(t)ϕ(t)dt,s=R〗 (abbreviated ϕ= ψ+K_z ϕ) in which K ϵ L_1 (R), z ϵ L_∞ (R) and ψ ϵ BC(R), the space of bounded continuous functions on R, are assumed known and ϕ ϵ BC(R) is to be determined. We first derive sharp error estimates for the finite section approximation (reducing the range of integration to [-A, A]) via bounds on (1-K_z )^(-1)as an operator on spaces of weighted continuous functions. Numerical solution by a simple discrete collocation method on a uniform grid on R is then analysed: in the case when z is compactly supported this leads to a coefficient matrix which allows a rapid matrix-vector multiply via the FFT. To utilise this possibility we propose a modified two-grid iteration, a feature of which is that the coarse grid matrix is approximated by a banded matrix, and analyse convergence and computational cost. In cases where z is not compactly supported a combined finite section and two-grid algorithm can be applied and we extend the analysis to this case. As an application we consider acoustic scattering in the half-plane with a Robin or impedance boundary condition which we formulate as a boundary integral equation of the class studied. Our final result is that if z (related to the boundary impedance in the application) takes values in an appropriate compact subset Q of the complex plane, then the difference between ϕ(s)and its finite section approximation computed numerically using the iterative scheme proposed is ≤C_1 [kh log〖(1⁄kh)+(1-Θ)^((-1)⁄2) (kA)^((-1)⁄2) 〗 ] in the interval [-ΘA,ΘA](Θ<1) for kh sufficiently small, where k is the wavenumber and h the grid spacing. Moreover this numerical approximation can be computed in ≤C_2 N logN operations, where N = 2A/h is the number of degrees of freedom. The values of the constants C1 and C2 depend only on the set Q and not on the wavenumber k or the support of z.