3 resultados para Réseau organique covalent
em CentAUR: Central Archive University of Reading - UK
Resumo:
Two mononuclear complexes of manganese(II), [Mn(OCN)(2)(phen)(2)] 1 and [Mn(NCO)(2)(bpy)(2)] 2 [1,10-phenanthroline (phen); 2,2'-bipyridine (bpy)], have been synthesized and characterized by single crystal X-ray analysis, infra-red spectroscopy and magnetic studies. The coordination structure of complex 2 is already reported. The cyanate anions are pendent in both the complexes. In 1, cyanate anion links manganese(II) through O-atom, whereas in 2 it coordinates through N-atom. The mononuclear fragments of 1 are built up to a supramolecular lamellar 3D architecture by pi-pi interactions only. On the other hand, mononuclear fragments of 2 are assembled to a 2D supramolecular brick-wall architecture by C-H-... pi interactions.
Gallium-sulphide supertetrahedral clusters as building blocks of covalent organic-inorganic networks
Resumo:
The synthesis and characterisation of novel covalent organic-inorganic architectures containing organically-functionalised supertetrahedra is described. The structures of these unique materials consist of one-dimensional zigzag chains or of honeycomb-type layers, in which gallium-sulfide supertetrahedral clusters and dipyridyl ligands alternate.
Resumo:
To analyse the mechanism and kinetics of DNA strand cleavages catalysed by the serine recombinase Tn3 resolvase, we made modified recombination sites with a single-strand nick in one of the two DNA strands. Resolvase acting on these sites cleaves the intact strand very rapidly, giving an abnormal half-site product which accumulates. We propose that these reactions mimic second-strand cleavage of an unmodified site. Cleavage occurs in a synapse of two sites, held together by a resolvase tetramer; cleavage at one site stimulates cleavage at the partner site. After cleavage of a nicked-site substrate, the half-site that is not covalently linked to a resolvase subunit dissociates rapidly from the synapse, destabilizing the entire complex. The covalent resolvase–DNA linkages in the natural reaction intermediate thus perform an essential DNA-tethering function. Chemical modifications of a nicked-site substrate at the positions of the scissile phosphodiesters result in abolition or inhibition of resolvase-mediated cleavage and effects on resolvase binding and synapsis, providing insight into the serine recombinase catalytic mechanism and how resolvase interacts with the substrate DNA.