26 resultados para Quercus ilex forests
em CentAUR: Central Archive University of Reading - UK
Resumo:
A field trial was undertaken to determine the influence of four commercially available film-forming polymers (Bond [alkyl phenyl hydroxyl polyoxyethylene], Newman Crop Spray 11E™ [paraffinic oil], Nu-Film P [poly-1-p menthene], and Spray Gard [di-1-p menthene]) on reducing salt spray injury on two woody species, evergreen oak (Quercus ilex L.) and laurel (Prunus laurocerasus L.). Irrespective of species, the film-forming polymers Nu-Film-P and Spay Gard did not provide any significant degree of protection against salt spray damage irrespective of concentration (1% or 2%) applied as measured by leaf chlorophyll concentrations, photosynthetic efficiency, visual leaf necrosis, foliar sodium and chloride content, and growth (height, leaf area). The film-forming polymer Newman Crop Spray 11E™ provided only 1-week protection against salt spray injury. The film-forming polymer Bond provided a significant (P < 0.05) degree of protection against salt spray injury 3 months after application as manifest by higher leaf chlorophyll content, photosynthetic efficiency, height and leaf area, and lower visual leaf necrosis and foliar Na and Cl content compared with nontreated controls. In conclusion, results indicate that application of a suitable film-forming polymer can provide a significant degree of protection of up to 3 months against salt spray injury in evergreen oak and laurel. Results also indicate that when applied at 1% or 2% solutions, no problems associated with phytotoxicity and rapid degradation on the leaf surface exist.
Resumo:
We investigated the role of urban Holm Oak (Quercus ilex L.) trees as airborne metal accumulators and metals' environmental fate. Analyses confirmed Pb, Cd, Cu and Zn as main contaminants in Siena's urban environment; only Pb concentrations decreased significantly compared to earlier surveys. Additionally, we determined chemical composition of tree leaves, litter and topsoil (underneath/outside tree crown) in urban and extra-urban oak stands. Most notably, litter in urban samples collected outside the canopy had significantly lower concentrations of organic matter and higher concentrations of Pb, Cu, Cd and Zn than litter collected underneath the canopy. There was a greater metals' accumulation in topsoil, in samples collected under the tree canopy and especially near the trunk ('stemflow area'). Thus, in urban ecosystems the Holm Oak stands likely increase the soil capability to bind metals.
Resumo:
The evergreen Quercus ilex L. is one of the most common trees in Italian urban environments and is considered effective in the uptake of particulate and gaseous atmospheric pollutants. However, the few available estimates on O3 and NO2 removal by urban Q. ilex originate from model-based studies (which indicate NO2/O3 removal capacity of Q. ilex) and not from direct measurements of air pollutant concentrations. Thus, in the urban area of Siena (central Italy) we began long-term monitoring of O3/NO2 concentrations using passive samplers at a distance of 1, 5, 10 m from a busy road, under the canopies of Q. ilex and in a nearby open-field. Measurements performed in the period June 2011-October 2013 showed always a greater decrease of NO2 concentrations under the Q. ilex canopy than in the open-field transect. Conversely, a decrease of average O3 concentrations under the tree canopy was found only in autumn after the typical Mediterranean post-summer rainfalls. Our results indicate that interactions between O3/NO2 concentrations and trees in Mediterranean urban ecosystems are affected by temporal variations in climatic conditions. We argue therefore that the direct measurement of atmospheric pollutant concentrations should be chosen to describe local changes of aerial pollution.
Resumo:
Holm oak (Quercus ilex), a widespread urban street tree in the Mediterranean region, is widely used as biomonitor of persistent atmospheric pollutants, especially particulate-bound metals. By using lab- and field-based experimental approaches, we compared the leaf-level capacity for particles’ capture and retention between Q. ilex and other common Mediterranean urban trees: Quercus cerris, Platanus × hispanica, Tilia cordata and Olea europaea. All applied methods were effective in quantifying particulate capture and retention, although not univocal in ranking species performances. Distinctive morphological features of leaves led to differences in species’ ability to trap and retain particles of different size classes and to accumulate metals after exposure to traffic in an urban street. Overall, P. × hispanica and T. cordata showed the largest capture potential per unit leaf area for most model particles (Na+ and powder particles), and street-level Cu and Pb, while Q. ilex acted intermediately. After wash-off experiments, P. × hispanica leaves had the greatest retention capacity among the tested species and O. europaea the lowest. We concluded that the Platanus planting could be considered in Mediterranean urban environments due to its efficiency in accumulating and retaining airborne particulates; however, with atmospheric pollution being typically higher in winter, the evergreen Q. ilex represents a better year-round choice to mitigate the impact of airborne particulate pollutants.
Resumo:
Resumo:
Trees outside forests (TOF) in Nepal’s Terai have significantly increased over the past decade. The Chitwan District was one of the focus districts in the Terai Community Forestry Development Project that promoted a tree seedling distribution program. This paper examines the current position of tree integration on farmland and its contribution to livelihoods of rural households in this district. Interviews with local key informants, government and non-government agencies and woodbased industries, as well as an in-depth study of 32 households were used to describe the constraints faced by the households in management of trees on farmland. Most households cited disease, poor growth, lack of preferred tree species, lack of technical support, an uncertain tree market, and lack of financial support as constraints. Despite the important role of trees in subsistence and marketbased rural livelihood diversification, and the consequent reduction in pressure on national forests from on-farm trees, current government policies and practices fail to recognise the value of these trees. It is argued that there is substantial potential for improving on-farm trees to enhance rural livelihoods. A responsive service mechanism centred on tree growing households would help the management of tree resources on the farmland.
Resumo:
Biomass conversion and expansion factors (BCEF) which convert tree stem volume to whole tree biomass and biomass allocation patterns in young trees were studied in order to estimate tree and stand biomass in naturally regenerated forests. European beech (Fagus sylvatica L.), Sessile oak (Quercus petraea (Mattuschka) Liebl.) and Scots pine (Pinus sylvestris L.) stands were compared. Seven forest stands of each species were chosen to cover their natural distribution in Slovakia. Species specific BCEF are presented, generally showing a steep decrease in all species in the smallest trees, with the only exception in the case of branch BCEF in beech which grows with increasing tree size. The values of BCEF for all tree compartments stabilise in all species once trees reach about 60-70mm diameter at base. As they grow larger, all species increase their allocation to stem and branches, while decreasing the relative growth of roots and foliage. There are, however, clear differences between species and also between broadleaves and conifers in biomass allocation. This research shows that species specific coefficients must be used if we are to reduce uncertainties in estimates of carbon stock changes by afforestation and reforestation activities.
Resumo:
Current forest Free Air CO2 Enrichment (FACE) experiments are reaching completion. Therefore, it is time to define the scientific goals and priorities of future experimental facilities. In this opinion article, we discuss the following three overarching issues (i) What are the most urgent scientific questions and how can they be addressed? (ii) What forest ecosystems should be investigated? (iii) Which other climate change factors should be coupled with elevated CO2 concentrations in future experiments to better predict the effects of climate change? Plantations and natural forests can have conflicting purposes for high productivity and environmental protection. However, in both cases the assessment of carbon balance and how this will be affected by elevated CO2 concentrations and the interacting climate change factors is the most pressing priority for future experiments.
Resumo:
Forest managers in developing countries enforce extraction restrictions to limit forest degradation. In response, villagers may displace some of their extraction to other forests, which generates “leakage” of degradation. Managers also implement poverty alleviation projects to compensate for lost resource access or to induce conservation. We develop a model of spatial joint production of bees and fuelwood that is based on forest-compatible projects such as beekeeping in Thailand, Tanzania, and Mexico. We demonstrate that managers can better determine the amount and pattern of degradation by choosing the location of both enforcement and the forest-based activity.
Resumo:
This paper relates the key findings of the optimal economic enforcement literature to practical issues of enforcing forest and wildlife management access restrictions in developing countries. Our experiences, particularly from Tanzania and eastern India, provide detail of the key pragmatic issues facing those responsible for protecting natural resources. We identify large gaps in the theoretical literature that limit its ability to inform practical management, including issues of limited funding and cost recovery, multiple tiers of enforcement and the incentives facing enforcement officers, and conflict between protected area managers and rural people's needs.
Resumo:
Background and Aims Forest trees directly contribute to carbon cycling in forest soils through the turnover of their fine roots. In this study we aimed to calculate root turnover rates of common European forest tree species and to compare them with most frequently published values. Methods We compiled available European data and applied various turnover rate calculation methods to the resulting database. We used Decision Matrix and Maximum-Minimum formula as suggested in the literature. Results Mean turnover rates obtained by the combination of sequential coring and Decision Matrix were 0.86 yr−1 for Fagus sylvatica and 0.88 yr−1 for Picea abies when maximum biomass data were used for the calculation, and 1.11 yr−1 for both species when mean biomass data were used. Using mean biomass rather than maximum resulted in about 30 % higher values of root turnover. Using the Decision Matrix to calculate turnover rate doubled the rates when compared to the Maximum-Minimum formula. The Decision Matrix, however, makes use of more input information than the Maximum-Minimum formula. Conclusions We propose that calculations using the Decision Matrix with mean biomass give the most reliable estimates of root turnover rates in European forests and should preferentially be used in models and C reporting.
Resumo:
Ensemble learning techniques generate multiple classifiers, so called base classifiers, whose combined classification results are used in order to increase the overall classification accuracy. In most ensemble classifiers the base classifiers are based on the Top Down Induction of Decision Trees (TDIDT) approach. However, an alternative approach for the induction of rule based classifiers is the Prism family of algorithms. Prism algorithms produce modular classification rules that do not necessarily fit into a decision tree structure. Prism classification rulesets achieve a comparable and sometimes higher classification accuracy compared with decision tree classifiers, if the data is noisy and large. Yet Prism still suffers from overfitting on noisy and large datasets. In practice ensemble techniques tend to reduce the overfitting, however there exists no ensemble learner for modular classification rule inducers such as the Prism family of algorithms. This article describes the first development of an ensemble learner based on the Prism family of algorithms in order to enhance Prism’s classification accuracy by reducing overfitting.