27 resultados para Px4 and Civil Aircraft
em CentAUR: Central Archive University of Reading - UK
Resumo:
[ 1] The European Centre for Medium-Range Weather Forecasts (ECMWF) 40-year Reanalysis (ERA-40) ozone and water vapor reanalysis fields during the 1990s have been compared with independent satellite data from the Halogen Occultation Experiment (HALOE) and Microwave Limb Sounder (MLS) instruments on board the Upper Atmosphere Research Satellite (UARS). In addition, ERA-40 has been compared with aircraft data from the Measurements of Ozone and Water Vapour by Airbus In-Service Aircraft (MOZAIC) program. Overall, in comparison with the values derived from the independent observations, the upper stratosphere in ERA-40 has about 5 - 10% more ozone and 15 - 20% less water vapor. This dry bias in the reanalysis appears to be global and extends into the middle stratosphere down to 40 hPa. Most of the discrepancies and seasonal variations between ERA-40 and the independent observations occur within the upper troposphere over the tropics and the lower stratosphere over the high latitudes. ERA-40 reproduces a weaker Antarctic ozone hole, and of less vertical extent, than the independent observations; values in the ozone maximum in the tropical stratosphere are lower for the reanalysis. ERA-40 mixing ratios of water vapor are considerably larger than those for MOZAIC, typically by 20% in the tropical upper troposphere, and they may exceed 60% in the lower stratosphere over high latitudes. The results imply that the Brewer-Dobson circulation in the ECMWF reanalysis system is too fast, as is also evidenced by deficiencies in the way ERA-40 reproduces the water vapor "tape recorder'' signal in the tropical stratosphere. Finally, the paper examines the biases and their temporal variation during the 1990s in the way ERA-40 compares to the independent observations. We also discuss how the evaluation results depend on the instrument used, as well as on the version of the data.
Resumo:
This article examines the politics of place in relation to legal mobilization by the anti-nuclear movement. It examines two case examples - citizens' weapons inspections and civil disobedience strategies - which have involved the movement drawing upon the law in particular spatial contexts. The article begins by examining a number of factors which have been employed in recent social movement literature to explain strategy choice, including ideology, resources, political and legal opportunity, and framing. It then proceeds to argue that the issues of scale, space, and place play an important role in relation to framing by the movement in the two case examples. Both can be seen to involve scalar reframing, with the movement attempting to resist localizing tendencies and to replace them with a global frame. Both also involve an attempt to reframe the issue of nuclear weapons away from the contested frame of the past (unilateral disarmament) towards the more universal and widely accepted frame of international law.
Resumo:
In the past decade, airborne based LIght Detection And Ranging (LIDAR) has been recognised by both the commercial and public sectors as a reliable and accurate source for land surveying in environmental, engineering and civil applications. Commonly, the first task to investigate LIDAR point clouds is to separate ground and object points. Skewness Balancing has been proven to be an efficient non-parametric unsupervised classification algorithm to address this challenge. Initially developed for moderate terrain, this algorithm needs to be adapted to handle sloped terrain. This paper addresses the difficulty of object and ground point separation in LIDAR data in hilly terrain. A case study on a diverse LIDAR data set in terms of data provider, resolution and LIDAR echo has been carried out. Several sites in urban and rural areas with man-made structure and vegetation in moderate and hilly terrain have been investigated and three categories have been identified. A deeper investigation on an urban scene with a river bank has been selected to extend the existing algorithm. The results show that an iterative use of Skewness Balancing is suitable for sloped terrain.
Resumo:
The main aim of this study was to ascertain and discuss the current challenges and opportunities facing construction contractors in Ghana. This involved a review of the economic, legal and political environments in which contractors in Ghana operate; a review of published studies on construction in developing countries generally and Ghana specifically; and in-depth interviews and discussions with seven building and civil engineering contractors in Ghana in 2009 and 2010. Six road contractors were also interviewed. The findings indicate significant challenges relating mainly to financing for projects and a harsh business environment. However, most contractors interviewed admitted to significant problems in their own organisations. It is clear that the contracting environment in Ghana is harsh particularly for local contractors who are often not paid on time and without compensation for late payment. However, local construction firms in Ghana who want to breakthrough ought to formulate the right strategic plans, develop innovative business strategies, develop professionalism, and merge with local firms with similar organisational values and characteristics. In short, local or indigenous Ghanaian contractors ought to face up to the reality of competition and the dynamics of modern business in order to survive, grow and become major players in the construction industry in Ghana.
Resumo:
Light Detection And Ranging (LIDAR) is an important modality in terrain and land surveying for many environmental, engineering and civil applications. This paper presents the framework for a recently developed unsupervised classification algorithm called Skewness Balancing for object and ground point separation in airborne LIDAR data. The main advantages of the algorithm are threshold-freedom and independence from LIDAR data format and resolution, while preserving object and terrain details. The framework for Skewness Balancing has been built in this contribution with a prediction model in which unknown LIDAR tiles can be categorised as “hilly” or “moderate” terrains. Accuracy assessment of the model is carried out using cross-validation with an overall accuracy of 95%. An extension to the algorithm is developed to address the overclassification issue for hilly terrain. For moderate terrain, the results show that from the classified tiles detached objects (buildings and vegetation) and attached objects (bridges and motorway junctions) are separated from bare earth (ground, roads and yards) which makes Skewness Balancing ideal to be integrated into geographic information system (GIS) software packages.
Resumo:
The transport sector emits a wide variety of gases and aerosols, with distinctly different characteristics which influence climate directly and indirectly via chemical and physical processes. Tools that allow these emissions to be placed on some kind of common scale in terms of their impact on climate have a number of possible uses such as: in agreements and emission trading schemes; when considering potential trade-offs between changes in emissions resulting from technological or operational developments; and/or for comparing the impact of different environmental impacts of transport activities. Many of the non-CO2 emissions from the transport sector are short-lived substances, not currently covered by the Kyoto Protocol. There are formidable difficulties in developing metrics and these are particularly acute for such short-lived species. One difficulty concerns the choice of an appropriate structure for the metric (which may depend on, for example, the design of any climate policy it is intended to serve) and the associated value judgements on the appropriate time periods to consider; these choices affect the perception of the relative importance of short- and long-lived species. A second difficulty is the quantification of input parameters (due to underlying uncertainty in atmospheric processes). In addition, for some transport-related emissions, the values of metrics (unlike the gases included in the Kyoto Protocol) depend on where and when the emissions are introduced into the atmosphere – both the regional distribution and, for aircraft, the distribution as a function of altitude, are important. In this assessment of such metrics, we present Global Warming Potentials (GWPs) as these have traditionally been used in the implementation of climate policy. We also present Global Temperature Change Potentials (GTPs) as an alternative metric, as this, or a similar metric may be more appropriate for use in some circumstances. We use radiative forcings and lifetimes from the literature to derive GWPs and GTPs for the main transport-related emissions, and discuss the uncertainties in these estimates. We find large variations in metric (GWP and GTP) values for NOx, mainly due to the dependence on location of emissions but also because of inter-model differences and differences in experimental design. For aerosols we give only global-mean values due to an inconsistent picture amongst available studies regarding regional dependence. The uncertainty in the presented metric values reflects the current state of understanding; the ranking of the various components with respect to our confidence in the given metric values is also given. While the focus is mostly on metrics for comparing the climate impact of emissions, many of the issues are equally relevant for stratospheric ozone depletion metrics, which are also discussed.
Resumo:
During April-May 2010 volcanic ash clouds from the Icelandic Eyjafjallajökull volcano reached Europe causing an unprecedented disruption of the EUR/NAT region airspace. Civil aviation authorities banned all flight operations because of the threat posed by volcanic ash to modern turbine aircraft. New quantitative airborne ash mass concentration thresholds, still under discussion, were adopted for discerning regions contaminated by ash. This has implications for ash dispersal models routinely used to forecast the evolution of ash clouds. In this new context, quantitative model validation and assessment of the accuracies of current state-of-the-art models is of paramount importance. The passage of volcanic ash clouds over central Europe, a territory hosting a dense network of meteorological and air quality observatories, generated a quantity of observations unusual for volcanic clouds. From the ground, the cloud was observed by aerosol lidars, lidar ceilometers, sun photometers, other remote-sensing instru- ments and in-situ collectors. From the air, sondes and multiple aircraft measurements also took extremely valuable in-situ and remote-sensing measurements. These measurements constitute an excellent database for model validation. Here we validate the FALL3D ash dispersal model by comparing model results with ground and airplane-based measurements obtained during the initial 14e23 April 2010 Eyjafjallajökull explosive phase. We run the model at high spatial resolution using as input hourly- averaged observed heights of the eruption column and the total grain size distribution reconstructed from field observations. Model results are then compared against remote ground-based and in-situ aircraft-based measurements, including lidar ceilometers from the German Meteorological Service, aerosol lidars and sun photometers from EARLINET and AERONET networks, and flight missions of the German DLR Falcon aircraft. We find good quantitative agreement, with an error similar to the spread in the observations (however depending on the method used to estimate mass eruption rate) for both airborne and ground mass concentration. Such verification results help us understand and constrain the accuracy and reliability of ash transport models and it is of enormous relevance for designing future operational mitigation strategies at Volcanic Ash Advisory Centers.
Resumo:
The Cold War in the late 1940s blunted attempts by the Truman administration to extend the scope of government in areas such as health care and civil rights. In California, the combined weakness of the Democratic Party in electoral politics and the importance of fellow travelers and communists in state liberal politics made the problem of how to advance the left at a time of heightened Cold War tensions particularly acute. Yet by the early 1960s a new generation of liberal politicians had gained political power in the Golden State and was constructing a greatly expanded welfare system as a way of cementing their hold on power. In this article I argue that the New Politics of the 1970s, shaped nationally by Vietnam and by the social upheavals of the 1960s over questions of race, gender, sexuality, and economic rights, possessed particular power in California because many activists drew on the longer-term experiences of a liberal politics receptive to earlier anti-Cold War struggles. A desire to use political involvement as a form of social networking had given California a strong Popular Front, and in some respects the power of new liberalism was an offspring of those earlier battles.
Resumo:
Simulations of polar ozone losses were performed using the three-dimensional high-resolution (1∘ × 1∘) chemical transport model MIMOSA-CHIM. Three Arctic winters 1999–2000, 2001–2002, 2002–2003 and three Antarctic winters 2001, 2002, and 2003 were considered for the study. The cumulative ozone loss in the Arctic winter 2002–2003 reached around 35% at 475 K inside the vortex, as compared to more than 60% in 1999–2000. During 1999–2000, denitrification induces a maximum of about 23% extra ozone loss at 475 K as compared to 17% in 2002–2003. Unlike these two colder Arctic winters, the 2001–2002 Arctic was warmer and did not experience much ozone loss. Sensitivity tests showed that the chosen resolution of 1∘ × 1∘ provides a better evaluation of ozone loss at the edge of the polar vortex in high solar zenith angle conditions. The simulation results for ozone, ClO, HNO3, N2O, and NO y for winters 1999–2000 and 2002–2003 were compared with measurements on board ER-2 and Geophysica aircraft respectively. Sensitivity tests showed that increasing heating rates calculated by the model by 50% and doubling the PSC (Polar Stratospheric Clouds) particle density (from 5 × 10−3 to 10−2 cm−3) refines the agreement with in situ ozone, N2O and NO y levels. In this configuration, simulated ClO levels are increased and are in better agreement with observations in January but are overestimated by about 20% in March. The use of the Burkholder et al. (1990) Cl2O2 absorption cross-sections slightly increases further ClO levels especially in high solar zenith angle conditions. Comparisons of the modelled ozone values with ozonesonde measurement in the Antarctic winter 2003 and with Polar Ozone and Aerosol Measurement III (POAM III) measurements in the Antarctic winters 2001 and 2002, shows that the simulations underestimate the ozone loss rate at the end of the ozone destruction period. A slightly better agreement is obtained with the use of Burkholder et al. (1990) Cl2O2 absorption cross-sections.
Resumo:
How should we understand the nature of patients’ right in public health care systems? Are health care rights different to rights under a private contract for car insurance? This article distinguishes between public and private rights and the relevance of community interests and notions of social solidarity. It discusses the distinction between political and civil rights, and social and economic rights and the inherently political and redistributive nature of the latter. Nevertheless, social and economic rights certainly give rise to “rights” enforceable by the courts. In the UK (as in many other jurisdictions), the courts have favoured a “procedural” approach to the question, in which the courts closely scrutinise decisions and demand high standards of rationality from decision-makers. However, although this is the general rule, the article also discusses a number of exceptional cases where “substantive” remedies are available which guarantee patients access to the care they need.
Resumo:
LIght Detection And Ranging (LIDAR) data for terrain and land surveying has contributed to many environmental, engineering and civil applications. However, the analysis of Digital Surface Models (DSMs) from complex LIDAR data is still challenging. Commonly, the first task to investigate LIDAR data point clouds is to separate ground and object points as a preparatory step for further object classification. In this paper, the authors present a novel unsupervised segmentation algorithm-skewness balancing to separate object and ground points efficiently from high resolution LIDAR point clouds by exploiting statistical moments. The results presented in this paper have shown its robustness and its potential for commercial applications.