16 resultados para Pt-based nanoparticles

em CentAUR: Central Archive University of Reading - UK


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The formation of hydrogen-bonded interpolymer complexes between poly(acrylic acid) and poly(N-vinyl pyrrolidone) as well as amphiphilic copolymers of N-vinyl pyrrolidone with vinyl propyl ether has been studied in aqueous and organic solutions. It was demonstrated that introduction of vinyl propyl ether units into the macromolecules of the nonionic polymer enhances their ability to form complexes in aqueous solutions due to more significant contribution of hydrophobic effects. The complexation was found to be a multistage process that involves the formation of primary polycomplex particles, which further aggregate to form spherical nanoparticles. Depending on the environmental factors (pH, solvent nature), these nanoparticles may either form stable colloidal solutions or undergo further aggregation, resulting in precipitation of interpolymer complexes. In organic solvents, the intensity of complex formation increases in the following order: methanol < ethanol < isopropanol < dioxane. The multilayered coatings were developed using layer-by-layer deposition of interpolymer complexes on glass surfaces. It was demonstrated that the solvent nature affects the efficiency of coating deposition.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The surface of a nanofiber that is formed from a self-assembling pseudopeptide has been decorated by gold and silver nanoparticles that are stabilized by a dipeptide. Transmission electron microscopic images make the decoration visible. In this paper, a new strategy of mineralizing a pseudopeptide based nanofiber by gold and silver nanoparticles with use of a two-component nanografting method is described.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

New lanthanide complexes of 3-hydroxypicolinic acid (HpicOH) were prepared: [Ln(H2O)(picOH)(2)(mu-HpicO)].3H(2)O (Ln = Eu, Tb, Er). The complexes were characterized using photoluminescence, infrared, Raman, and H-1 NMR spectroscopy, and elemental analysis. The crystal structure of [Eu(H2O)(picOH)(2)(mu-HpicO)] . 3H(2)O 1 was determined by X-ray diffraction. Compound 1 crystallizes in a monoclinic system with space group P2(1)/c and cell parameters a = 9.105(13) Angstrom, b = 18.796(25) Angstrom, and c = 13.531(17) Angstrom, and beta = 104.86(1) deg. The 3-hydroxypicolinate ligands coordinate through both N,O- or O,O- chelation to the lanthanide ions, as shown by X-ray and spectroscopic results. Photoluminescence measurements were performed for the Eu(III) and Tb(III) complexes; the Eu(III) complex was investigated in more detail. The Eu(III) compound is highly luminescent and acts as a photoactive center in nanocomposite materials whose host matrixes are silica nanoparticles.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Photoelectron spectroscopy and scanning tunneling microscopy have been used to investigate how the oxidation state of Ce in CeO2-x(111) ultrathin films is influenced by the presence of Pd nanoparticles. Pd induces an increase in the concentration of Ce3+ cations, which is interpreted as charge transfer from Pd to CeO2-x(111) on the basis of DFT+U calculations. Charge transfer from Pd to Ce4+ is found to be energetically favorable even for individual Pd adatoms. These results have implications for our understanding of the redox behavior of ceria-based model catalyst systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Increasing areas of altered wetland are being restored by re-flooding the soil. Evidence in the literature indicates that this practice can induce the redox-mediated release of soil nutrients, thereby increasing the risk of diffuse water pollution. However, for the sake of improving wedand management decisions, there is a need for more detailed studies of the underlying relationship between the hydrological and redox dynamics that explain this risk; this is particularly the case in agricultural peatlands that are commonly targeted for the creation of lowland wet grassland. A 12-month field study was conducted to evaluate the relationship between hydrological fluctuations and soil redox potential (Eh) in a nutrient-rich peat field (32 g N kg(-1) and 1100 mg P kg(-1) in the surface 0-30 cm soil) that had been restored as lowland wet grassland from intensive arable production. Field tensiometers were installed at the 30-, 60- and 90-cm soil depths, and Pt electrodes at the 10-, 30-, 60- and 90-cm depths, for daily logging of soil water tension and Eh, respectively. The values for soil water tension displayed a strong negative relationship (P < 0.001) with monthly dip well observations of water table height. Calculations of soil water potential from the logged tension values were used, therefore, to provide a detailed profile of field water level and, together with precipitation data, explained some of the variation in Eh. For example, during the summer, alternating periods of aerobism (Eh > 330 mV) in the surface, 0-10 cm layer of peat coincided with intense precipitation events. Redox potential throughout the 30-100 cm profile also fluctuated seasonally; indeed, at all depths Eh displayed a strong, negative relationship (P < 0.001) with water table height over the 12-month study period. However, Eh throughout the 30-100 cm profile remained relatively low (< 230 mV), indicating permanently reduced conditions that are associated with denitrification and reductive dissolution of Fe-bound P. The implications of these processes in the N- and P-rich peat for wetland plant diversity and water quality are discussed. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Calculations are reported of the magnetic anisotropy energy of two-dimensional (2D) Co nanostructures on a Pt(111) substrate. The perpendicular magnetic anisotropy (PMA) of the 2D Co clusters strongly depends on their size and shape, and rapidly decreases with increasing cluster size. The PMA calculated is in reasonable agreement with experimental results. The sensitivity of the results to the Co-Pt spacing at the interface is also investigated and, in particular, for a complete Co monolayer we note that the value of the spacing at the interface determines whether PMA or in-plane anisotropy occurs. We find that the PMA can be greatly enhanced by the addition of Pt adatoms to the top surface of the 2D Co clusters. A single Pt atom can induce in excess of 5 meV to the anisotropy energy of a cluster. In the absence of the Pt adatoms the PMA of the Co clusters falls below 1 meV/Co atom for clusters of about 10 atoms whereas, with Pt atoms added to the surface of the clusters, a PMA of 1 meV/Co atom can be maintained for clusters as large as about 40 atoms. The effect of placing Os atoms on the top of the Co clusters is also considered. The addition of 5d atoms and clusters on the top of ferromagnetic nanoparticles may provide an approach to tune the magnetic anisotropy and moment separately.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

FePt magnetic nanoparticles are an important candidate material for many future magnetic applications. FePt exists as two main phases, that is, a disordered face-centered cubic (fcc) structure, which is generally prepared by chemical methods at low temperatures, and the high-temperature chemically ordered face-centered tetragonal (fct) structure. The fee FePt, with low coercivity but associated with superparamagnetic properties, may find applications as a magnetic fluid or as a nanoscale carrier for chemical or biochemical species in biomedical areas, while fct FePt is proposed for use in ultrahigh-density magnetic recording applications. However, for both of these applications an enhancement of the intrinsically weak magnetic properties, the avoidance of magnetic interferences from neighbor particles, and the improved stability of the small magnetic body remain key practical issues. We report a simple synthetic method for producing FePt nanoparticles that involves hydrothermal treatment of Fe and Pt precursors in glucose followed by calcination at 900 degrees C. This new method produces thermally stable spheroidal graphite nanoparticles (large and fullerene-like) that encapsulate or decorate FePt particles of ca. 5 nm with no severe macroscopic particle coalescence. Also, a low coercivity of the material is recorded; indicative of small magnetic interference from neighboring carbon-coated particles. Thus, this simple synthetic method involves the use of a more environmentally acceptable glucose/aqueous phase to offer a protective coating for FePt nanoparticles. It is also believed that such a synthetic protocol can be readily extended to the preparation of other graphite-coated magnetic iron alloys of controlled size, stoichiometry, and physical properties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

WO3-based materials as sensors for the monitor of environmental gases such as NO2 (NO + NO2) have been rapidly developed for various potential applications (stationary and mobile uses). It has been reported that these materials are highly sensitive to NOx with the sensitivity further enhanced by adding precious group metals (PGM such as Pt, Pd, Au, etc.). However, there has been limited work in revealing the sensing mechanism for these gases over the WO3-based sensors. In particular, the role of promoter is not yet clear though speculations on their catalytic, electronic and structural effects have been made in the past. In parallel to these PGM promoters here we report,for the first time, that Ag promotion can also enhance WO3 sensitivity significantly. In addition, this promotion decreases the optimum sensor temperature of 300 degreesC for Most WO3-based sensors, to below 200 degreesC. Characterizations (XRD, TEM, and impedance measurement) reveal that there is no significant bulk structure change nor particle size alteration in the WO3 phases during the NO exposure. However, it is found that the Ag doping creates a high concentration of oxygen vacancies in form of coordinated crystallographic shear (CS) planes onto the underneath WO3. It is thus proposed that the Ag particle facilitates the oxidative conversion of NO to NO2 followed by a subsequent NO2 adsorption on the defective WO, sites created at the Ag-WO3 interface; hence, accounting for the high molecular sensitivity. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have used synchrotron-based high-resolution X-ray photoelectron spectroscopy in combination with ab initio density functional theory calculations to investigate the characteristics of water and CO adsorption on the bimetallic Cu/Pt{110}-(2 x 1) surface at a Cu coverage near 0.5 ML. Cu fills the troughs of the reconstructed clean surface forming nanowires, which are stable up to 830 K. Their presence dramatically influences the adsorption of water and CO. Water adsorption changes from intact to partially dissociated while the desorption temperature of CO on this surface increases by up to 27 K with respect to the clean Pt{110} surface. Ab initio calculations and experimental valence band spectra reveal that the Cu 3d-band is narrowed and shifted upward with respect to bulk Cu surfaces. This and electron donation to surface Pt atoms cause the increase in the bond strength between CO and the Pt surface atoms. The pathway for water dissociation occurs via Cu surface atoms. The heat of adsorption of water bonding to Cu surface atoms was calculated to be 0.82 eV, which is significantly higher than on the clean Pt{110} surface; the activation energy for partial dissociation is 0.53 eV (not corrected for zero point energy).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Quartz crystal microbalance (QCM) measurements of the formation of a 4-aminothiophenol (4-ATP)self-assembled monolayer (SAM) at a gold electrode showed that a surface coverage of 118 ng cm(-2) was obtained after a 3 h exposure period, indicating that good surface coverage was achieved. Cyclic voltammetry of the ferricyanide redox couple across this SAM modified surface produced similar results to those of a bare electrode; however, the electroreduction of oxygen was found to be impaired. The 4-ATP SAM layer was not stable to repeated electrochemical oxidation and reduction; it is believed that the 4-ATP SAM layer was first converted to a 4'-mercapto-N-phenylquinone diimine (NPQD) layer followed by subsequent formation of a 4'-mercapto-N-phenylquinone monoimine (NPQM) layer. We also report a quartz crystal microbalance study of the attachment of platinum nanoparticles to such SAM modified electrodes. We show that five times the amount of platinum nanoparticles can be attached to a 4-ATP modified electrode surface (observed frequency change - 187 Hz) compared with an NPQD modified electrode surface (observed frequency change -35 Hz). The presence of the platinum particles was confirmed electrochemically by their surface electrochemical properties, which were different from those of the underlying gold electrode. It is believed that this is the first time that such direct evidence of electrochemical communication between platinum nanoparticles and a SAM modified electrode surface has been obtained. It was also shown to be possible to build up multilayer SAM/nanoparticle modified surfaces while maintaining efficient electrochemical communication. Up to three SAM/nanoparticle sandwich layers were constructed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conventional supported metal catalysts are metal nanoparticles deposited on high surface area oxide supports with a poorly defined metal−support interface. Typically, the traditionally prepared Pt/ceria catalyzes both methanation (H2/CO to CH4) and water−gas shift (CO/H2O to CO2/H2) reactions. By using simple nanochemistry techniques, we show for the first time that Pt or PtAu metal can be created inside each CeO2 particle with tailored dimensions. The encapsulated metal is shown to interact with the thin CeO2 overlayer in each single particle in an optimum geometry to create a unique interface, giving high activity and excellent selectivity for the water−gas shift reaction, but is totally inert for methanation. Thus, this work clearly demonstrates the significance of nanoengineering of a single catalyst particle by a bottom-up construction approach in modern catalyst design which could enable exploitation of catalyst site differentiation, leading to new catalytic properties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An assessment of aerosol-cloud interactions (ACI) from ground-based remote sensing under coastal stratiform clouds is presented. The assessment utilizes a long-term, high temporal resolution data set from the Atmospheric Radiation Measurement (ARM) Program deployment at Pt. Reyes, California, United States, in 2005 to provide statistically robust measures of ACI and to characterize the variability of the measures based on variability in environmental conditions and observational approaches. The average ACIN (= dlnNd/dlna, the change in cloud drop number concentration with aerosol concentration) is 0.48, within a physically plausible range of 0–1.0. Values vary between 0.18 and 0.69 with dependence on (1) the assumption of constant cloud liquid water path (LWP), (2) the relative value of cloud LWP, (3) methods for retrieving Nd, (4) aerosol size distribution, (5) updraft velocity, and (6) the scale and resolution of observations. The sensitivity of the local, diurnally averaged radiative forcing to this variability in ACIN values, assuming an aerosol perturbation of 500 c-3 relative to a background concentration of 100 cm-3, ranges betwee-4 and -9 W -2. Further characterization of ACI and its variability is required to reduce uncertainties in global radiative forcing estimates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A particulate microemulsion is generated in a simple two-component system comprising an amphiphilic copolymer (Pluronic P123) in mixtures with tannic acid. This is correlated to complexation between the poly(ethylene oxide) in the Pluronic copolymer and the multiple hydrogen bonding units in tannic acid which leads to the breakup of the ordered structure formed in gels of Pluronic copolymers, and the formation of dispersed nanospheres containing a bicontinuous internal structure. These novel nanoparticles termed ‘‘emulsomes’’ are self-stabilized by a coating layer of Pluronic copolymer. The microemulsion exhibits a pearlescent appearance due to selective light scattering from the emulsion droplets. This simple formulation based on a commercial copolymer and a biofunctional and biodegradable additive is expected to find applications in the fast moving consumer goods sector.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PEGylated organosilica nanoparticles have been synthesized through self-condensation of (3-mercaptopropyl)trimethoxysilane in dimethyl sulfoxide into thiolated nanoparticles with their subsequent reaction with methoxypoly(ethylene glycol) maleimide. The PEGylated nanoparticles showed excellent colloidal stability over a wide range of pH in contrast to the parent thiolated nanoparticles, which have a tendency to aggregate irreversibly under acidic conditions (pH < 3.0). Due to the presence of a poly(ethylene glycol)-based corona, the PEGylated nanoparticles are capable of forming hydrogen-bonded interpolymer complexes with poly(acrylic acid) in aqueous solutions under acidic conditions, resulting in larger aggregates. The use of hydrogen-bonding interactions allows more efficient attachment of the nanoparticles to surfaces. The alternating deposition of PEGylated nanoparticles and poly(acrylic acid) on silicon wafer surfaces in a layer-by-layer fashion leads to multilayered coatings. The self-assembly of PEGylated nanoparticles with poly(acrylic acid) in aqueous solutions and at solid surfaces was compared to the behavior of linear poly(ethylene glycol). The nanoparticle system creates thicker layers than the poly(ethylene glycol), and a thicker layer is obtained on a poly(acrylic acid) surface than on a silica surface, because of the effects of hydrogen bonding. Some implications of these hydrogen-bonding-driven interactions between PEGylated nanoparticles and poly(acrylic acid) for pharmaceutical formulations are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Enantioselective heterogeneous hydrogenation of Cdouble bond; length as m-dashO bonds is of great potential importance in the synthesis of chirally pure products for the pharmaceutical and fine chemical industries. One of the most widely studied examples of such a reaction is the hydrogenation of β-ketoesters and β-diketoesters over Ni-based catalysts in the presence of a chiral modifier. Here we use scanning transmission X-ray microscopy combined with near-edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS) to investigate the adsorption of the chiral modifier, namely (R,R)-tartaric acid, onto individual nickel nanoparticles. The C K-edge spectra strongly suggest that tartaric acid deposited onto the nanoparticle surfaces from aqueous solutions undergoes a keto-enol tautomerisation. Furthermore, we are able to interrogate the Ni L2,3-edge resonances of individual metal nanoparticles which, combined with X-ray diffraction (XRD) patterns showed them to consist of a pure nickel phase rather than the more thermodynamically stable bulk nickel oxide. Importantly, there appears to be no “particle size effect” on the adsorption mode of the tartaric acid in the particle size range ~ 90–~ 300 nm.