84 resultados para Pseudopericyclic Reactions

em CentAUR: Central Archive University of Reading - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to examine the mechanisms by which gypsum increases the sorption of fertilizer-P in soils of and and semi-arid regions. Either gypsum or soil (Usher from the UK; pH 7.8, 7% organic matter, 21% CaCO3: Yasouj from Iran; pH 8.2, 1.4% OM, 18% CaCO3: Ghanimeh from Saudi Arabia; pH 7.8, 1% OM, 26% CaCO3, 13% gypsum) was shaken for 24 It with KH2PO4 solutions in 10 mM CaCl2. With gypsum, grinding increased sorption by a factor of about 3, and increase in pH from 5.6 to 7.5 greatly increased sorption. Scanning electron micrographs (SEM) and EDX quantitative analysis showed that small crystals of gypsum disappeared and roughly spherical particles of dicalcium phosphate (DCPD) were formed. Analysis of equilibrium Solutions showed, using GEOCHEM, that octa-calcium phosphate (OCP) coated the DCPD. For the soils, sorption was in the order Ghanimeh > Yasouj > Usher. Removal of gypsum from Ghanimeh reduced sorption, with precipitated gypsum having a greater effect than gypsum mixed physically with the soil. Addition to Usher had no effect. SEM and EDX could not be used in the soil matrix, but solubility analysis again showed that solutions were close to equilibrium with OCP. Usher was unresponsive to added gypsum, presumably because of its small sorption capacity and high organic matter content. In Ghanimeh and Yasouj soils, gypsum increased sorption by being a source of readily available Ca2+ (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanisms by which coatings develop on weathered grain surfaces, and their potential impact on rates of fluid-mineral interaction, have been investigated by examining feldspars from a 1.1 ky old soil in the Glen Feshie chronosequence, Scottish highlands. Using the focused ion beam technique, electron-transparent, foils for characterization by transmission electron microscopy were cut from selected parts of grain surfaces. Some parts were bare whereas others had accumulations, a few micrometres thick, of Weathering products, often mixed with mineral and microbial debris. Feldspar exposed at bare grain surfaces is crystalline throughout and so there is no evidence for the presence of the amorphous 'leached layers' that typically form in acid-dissolution experiments and have been described from some natural Weathering contexts. The weathering products comprise sub-mu m thick crystallites of an Fe-K aluminosilicate, probably smectite, that have grown within an amorphous and probably organic-rich matrix. There is also evidence for crystallization of clays having been mediated by fungal hyphae. Coatings formed within Glen Feshie soils after similar to 1.1 ky are insufficiently continuous or impermeable to slow rates Of fluid-feldspar reactions, but provide valuable insights into the complex Weathering microenvironments oil debris and microbe-covered mineral surfaces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The elemental composition of residues of maize (Zea mays), sorghum (S. bicolor), groundnuts (Arachis hypogea), soya beans (Glycine max), leucaena (L. leucocephala), gliricidia (G. sepium), and sesbania (S. sesban) was determined as a basis for examining their alkalinity when incorporated into an acidic Zambian Ferralsol. Potential (ash) alkalinity, available alkalinity by titration to pH 4 and soluble alkalinity (16 It water extract titrated to pH 4) were measured. Potential alkalinity ranged from 3 73 (maize) to 1336 (groundnuts) mmol kg(-1) and was equivalent to the excess of their cation charge over inorganic anion charge. Available alkalinity was about half the potential alkalinity. Cations associated with organic anions are the source of alkalinity. About two thirds of the available alkalinity is soluble. Residue buffer curves were determined by titration with H2SO4 to pH 4. Soil buffer capacity measured by addition of NaOH was 12.9 mmol kg(-1) pH(-1). Soil and residue (10 g:0.25 g) were shaken in solution for 24 h and suspension pH values measured. Soil pH increased from 4.3 to between 4.6 (maize) and 5.2 (soyabean) and the amounts of acidity neutralized (calculated from the rise in pH and the soil buffer capacity) were between 3.9 and 11.5 mmol kg(-1), respectively. The apparent base contributions by the residues (calculated from the buffer curves and the fall in pH) ranged between 105 and 350 mmol kg(-1) of residue, equivalent to 2.6 and 8.8 mmol kg(-1) of soil, respectively. Therefore, in contact with soil acidity, more alkalinity becomes available than when in contact with H2SO4 solution. Available alkalinity (to pH 4) would be more than adequate to supply that which reacts with soil but soluble alkalinity would not. It was concluded that soil Al is able to displace cations associated with organic anions in the residues which are not displaced by H+, or that residue decomposition may have begun in the soil suspension releasing some of the non-available alkalinity. Soil and four of the residues were incubated for 100 days and changes in pH, NH4+ and NO3- concentrations measured. An acidity budget equated neutralized soil acidity with residue alkalinity and base or acid produced by N transformations. Most of the potential alkalinity of soyabean and leucaena had reacted after 14 days, but this only occurred after 100 days for gliricidia, and for maize only the available alkalinity reacted. For gliricidia and leucaena, residue alkalinity was primarily used to react with acidity produced by nitrification. Thus, the ability of residues to ameliorate acidity depends not only on their available and potential alkalinity but also on their potential to release mineral N. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The rate coefficients for the reaction between atomic chlorine and a number of naturally occurring species have been measured at ambient temperature and atmospheric pressure using the relative rate technique. The values obtained were (4.0 ± 0.8) × 10-10, (2.1 ± 0.5) × 10-10, (3.2 ± 0.5) × 10-10, and (4.9 ± 0.5) × 10-10 cm3 molecule-1 s-1, for reactions with isoprene, methyl vinyl ketone, methacrolein and δ3-carene, respectively. The value obtained for isoprene compares favourably with previously reported values. No values have been reported to date for the rate constants of the other reactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The atmospheric chemistry of several gases used in industrial applications, C4F9OC2H5 (HFE-7200), C4F9OCH3 (HFE-7100), C3F7OCH3 (HFE-7000) and C3F7CH2OH, has been studied. The discharge flow technique coupled with mass-spectrometric detection has been used to study the kinetics of their reactions with OH radicals as a function of temperature. The infrared spectra of the compounds have also been measured. The following Arrhenius expressions for the reactions were determined (in units of cm3 molecule-1 s-1): k(OH + HFE-7200) = (6.9+2.3-1.7) × 10-11 exp(-(2030 ± 190)/T); k(OH + HFE-7100) = (2.8+3.2-1.5) × 10-11 exp(-(2200 ± 490)/T); k(OH + HFE-7000) = (2.0+1.2-0.7) × 10-11 exp(-(2130 ± 290)/T); and k(OH + C3F7CH2OH) = (1.4+0.3-0.2) × 10-11 exp(-(1460 ± 120)/T). From the infrared spectra, radiative forcing efficiencies were determined and compared with earlier estimates in the literature. These were combined with the kinetic data to estimate 100-year time horizon global warming potentials relative to CO2 of 69, 337, 499 and 36 for HFE-7200, HFE-7100, HFE-7000 and CF3CF2CF2CH2OH, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chlorosilylene, ClSiH, was prepared by 193 nm laser flash photolysis of 1-chloro-1-silacyclopent-3-ene in the gas phase. ClSiH was monitored in real time at 457.9 nm using a CW argon ion laser. The kinetics of reactions of ClSiH with C2H4, CH2 = CHCMe3, C2H2, Me2O, SO2, HCl, MeSiH3, Me2SiH2, Me3SiH, MeGeH3, MeGeH3 and precursor have been studied at ambient temperatures for the first time. Addition reactions of ClSiH and reactions with lone pair donors are faster than insertion reactions. Surprisingly ClSiH inserts faster into Si-H than Ge-H bonds. ClSiH is intermediate in reactivity between SiH2 and SiCI2. Relative reactivities of CISiH and SiH2 vary considerably. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Time-resolved studies of germylene, GeH2, generated by the 193 nm laser flash photolysis of 3,4-dimethyl-1-germacyclopent-3-ene, have been carried out to obtain rate constants for its bimolecular reactions with ethyl- and diethylgermanes in the gas phase. The reactions were studied over the pressure range 1-100 Torr with SF6 as bath gas and at five temperatures in the range 297-564 K. Only slight pressure dependences were found for GeH2 + EtGeH3 (399, 486, and 564 K). The high pressure rate constants gave the following Arrhenius parameters: for GeH2 + EtGeH3, log A = -10.75 +/- 0.08 and E-a = -6.7 +/- 0.6 kJ mol(-1); for GeH2 + Et2GeH2, log A = -10.68 +/- 0.11 and E-a = -6.95 +/- 0.80 kJ mol(-1). These are consistent with fast, near collision-controlled, association processes at 298 K. RRKM modeling calculations are, for the most part, consistent with the observed pressure dependence of GeH2 + EtGeH3. The ethyl substituent effects have been extracted from these results and are much larger than the analogous methyl substituent effects in the SiH2 + methylsilane reaction series. This is consistent with a mechanistic model for Ge-H insertion in which the intermediate complex has a sizable secondary barrier to rearrangement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Time-resolved studies of the reaction of silylene, SiH2, with N-2 have been attempted at 296, 417, and 484 K, using laser flash photolysis to generate and monitor SiH2. No conclusive evidence for reaction could be found even with pressures of N-2 of 500 Torr. This enables us to set upper limits of ca. 3 x 10(-15) cm(3) molecule(-1) s(-1) for the second-order rate constants. A lower limit for the activation energy, E-a, of ca. 47 kJ mol(-1) is also derived. Ab initio calculations at the G3 level indicate that the only SiH2N2 species of lower energy than the separated reactants is the H2Si...N-2 donor-acceptor (ylid) species with a relative enthalpy of -26 kJ mol(-1), insufficient for observation of reaction under the experimental conditions. Ten bound species on the SiH2N2 surface were found and their energies calculated as well as those of the potential dissociation products: HSiN + NH((3)Sigma(-)) and HNSi + NH((3)Sigma(-)). Additionally two of the transition states involving cyclic-SiH2N2 (siladiazirine) were explored. It appears that siladiazirine is neither thermodynamically nor kinetically stable. The findings indicate that Si-N-d bonds (where N-d is double-bonded nitrogen) are not particularly strong. An unexpected cyclic intermediate was found in the isomerization of silaisocyanamide to silacyanamide.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Time-resolved kinetic studies of the reaction of silylene, SiH2, generated by laser flash photolysis of phenylsilane, have been carried out to obtain rate constants for its bimolecular reaction with HCL The reaction was studied in the gas phase at 10 Torr total pressure in SF6 bath gas, at five temperatures in the range of 296-611 K. The second-order rate constants fitted the Arrhenius equation: log(k/cm(3) molecule(-1) s(-1)) = (-11.51 +/- 0.06) + (1.92 +/- 0.47 kJ mol(-1))/RTIn10 Experiments at other pressures showed that these rate constants were unaffected by pressure in the range of 10-100 Torr, but showed small decreases in value of no more than 20% ( +/- 10%) at I Toff, at both the highest and lowest temperatures. The data are consistent with formation of an initial weakly bound donor-acceptor complex, which reacts by two parallel pathways. The first is by chlorine-to-silicon H-shift to make vibrationally excited chlorosilane, SiH3Cl*, which yields HSiCl by H-2 elimination from silicon. In the second pathway, the complex proceeds via H-2 elimination (4-center process) to make chlorosilylene, HSiCl, directly. This interpretation is supported by ab initio quantum calculations carried out at the G3 level which reveal the direct H-2 elimination route for the first time. RRKM modeling predicts the approximate magnitude of the pressure effect but is unable to determine the proportions of each pathway. The experimental data agree with the only previous measurements at room temperature. Comparisons with other reactions of SiH2 are also drawn.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Time-resolved kinetic studies of the reaction of silylene, SiH2, generated by laser flash photolysis of both silacyclopent-3-ene and phenylsilane, have been carried out to obtain second-order rate constants for its reaction with CH3Cl. The reaction was studied in the gas phase at six temperatures in the range 294-606 K. The second-order rate constants gave a curved Arrhenius plot with a minimum value at T approximate to 370 K. The reaction showed no pressure dependence in the presence of up to 100 Torr SF6. The rate constants, however, showed a weak dependence on laser pulse energy. This suggests an interpretation requiring more than one contributing reaction pathway to SiH2 removal. Apart from a direct reaction of SiH2 with CH3Cl, reaction of SiH2 with CH3 (formed by photodissociation of CH3Cl) seems probable, with contributions of up to 30% to the rates. Ab initio calculations (G3 level) show that the initial step of reaction of SiH2 with CH3Cl is formation of a zwitterionic complex (ylid), but a high-energy barrier rules out the subsequent insertion step. On the other hand, the Cl-abstraction reaction leading to CH3 + ClSiH2 has a low barrier, and therefore, this seems the most likely candidate for the main reaction pathway of SiH2 with CH3Cl. RRKM calculations on the abstraction pathway show that this process alone cannot account for the observed temperature dependence of the rate constants. The data are discussed in light of studies of other silylene reactions with haloalkanes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Time resolved studies of silylene, SiH2, generated by the 193 nm laser. ash photolysis of phenylsilane, have been carried out to obtain rate coefficients for its bimolecular reactions with methyl-, dimethyl- and trimethyl-silanes in the gas phase. The reactions were studied over the pressure range 3 - 100 Torr with SF6 as bath gas and at five temperatures in the range 300 - 625 K. Only slight pressure dependences were found for SiH2 + MeSiH3 ( 485 and 602 K) and for SiH2 + Me2SiH2 ( 600 K). The high pressure rate constants gave the following Arrhenius parameters: [GRAPHICS] These are consistent with fast, near to collision-controlled, association processes. RRKM modelling calculations are consistent with the observed pressure dependences ( and also the lack of them for SiH2 + Me3SiH). Ab initio calculations at both second order perturbation theory (MP2) and coupled cluster (CCSD(T)) levels, showed the presence of weakly-bound complexes along the reaction pathways. In the case of SiH2 + MeSiH3 two complexes, with different geometries, were obtained consistent with earlier studies of SiH2 + SiH4. These complexes were stabilised by methyl substitution in the substrate silane, but all had exceedingly low barriers to rearrangement to product disilanes. Although methyl groups in the substrate silane enhance the intrinsic SiH2 insertion rates, it is doubtful whether the intermediate complexes have a significant effect on the kinetics. A further calculation on the reaction MeSiH + SiH4 shows that the methyl substitution in the silylene should have a much more significant kinetic effect ( as observed in other studies).