6 resultados para Pseudocheirus occidentalis

em CentAUR: Central Archive University of Reading - UK


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This is a synoptic monograph of fossil Orthoptera from the English Lower Cretaceous (Purbeck and Wealden groups). The previously described taxa of these insects are revised on the basis of type specimens and examination of extensive new material. Eight new genera and 30 new species are proposed: Probaisselcana cretacea sp. nov., Minelcana membranacea gen. et sp. nov., Panorpidium proximum sp. nov., P. bimacillatum sp. nov., ?P. parvum sp. nov. (Elcanidae); ?Cyrtophyllites cretaceus sp. nov. (Haglidae); Aenigmodus minutus gen. et sp. nov., Pseudaboilus wealdensis gen. et sp. nov., P. purbeckensis sp. nov., Tettigoilus sonorus gen. et sp. nov., ?Agrionidium obscurum sp. nov. (Prophalangopsidae); Notocearagryllus britannicus sp. nov., N. grandispeculum sp. nov., N. cordispeculum sp. nov., Anglogryllus lyristes gen. et sp. nov., A. rotundispeculum sp. nov.. Speculogryllus acutispeculum gen. et sp. nov., Sharategia davisi sp. nov., S. batchelorae sp. nov., S. baldocki sp. nov. (Baissogryllidae); ?Araripegryllus orientalis sp. nov. (Gryllidae); Deinovitimia occidentalis sp. nov. (Ensifera: infraorder incertae sedis); Cretoxya rasnitsyni gen. et sp. nov. (Tridactylidae); Locustopsis posterior sp. nov., Zeunerella prior sp. nov., Zessinia borealis sp. nov., Mesolocustopsis anglica sp. nov., M. angusta sp. nov., M. problematica sp. nov., and Britannacrida distincta gen. et sp. nov (Locustopsidae). The subfamily Baisselcaninae is synonymized with Elcaninae, and a new subfamily (Archelcaninae subfam. nov.) is proposed for a segregate of Elcaninae. A preliminary comparison of the Purbeck/Wealden with other Early Cretaceous orthopteran faunas is given. (c) 2006 Published by Elsevier Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Typically, the relationship between insect development and temperature is described by two characteristics: the minimum temperature needed for development to occur (T-min) and the number of day degrees required (DDR) for the completion of development. We investigated these characteristics in three English populations of Thrips major and T tabaci [Cawood, Yorkshire (N53degrees49', W1degrees7'); Boxworth, Cambridgeshire (N52degrees15', W0degrees1'); Silwood Park, Berkshire (N51degrees24', W0degrees38')], and two populations of Frankliniella occidentalis (Cawood; Silwood Park). While there were no significant differences among populations in either T-min (mean for T major = 7.0degreesC; T tabaci = 5.9degreesC; F. occidentalis = 6.7degreesC) or DDR (mean for T major = 229.9; T tabaci = 260.8; F occidentalis = 233.4), there were significant differences in the relationship between temperature and body size, suggesting the presence of geographic variation in this trait. Using published data, in addition to those newly collected, we found a negative relationship between T-min. and DDR for F occidentalis and T tabaci, supporting the hypothesis that a trade-off between T-min and DDR may constrain adaptation to local climatic conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In common with many plants native to low P soils, jarrah (Eucalyptus marginata) develops toxicity symptoms upon exposure to elevated phosphorus (P). Jarrah plants can establish arbuscular mycorrhizal (AM) and ectomycorrhizal (ECM) associations, along with a non-colonizing symbiosis described recently. AM colonization is known to influence the pattern of expression of genes required for P uptake of host plants and our aim was to investigate this phenomenon in relation to P sensitivity. Therefore, we examined the effect on hosts of the presence of AM and ECM fungi in combination with toxic pulses of P and assessed possible correlations between the induced tolerance and the shoot P concentration. The P transport dynamics of AM (Rhizophagus irregularis and Scutellospora calospora), ECM (Scleroderma sp.), non-colonizing symbiosis (Austroboletus occidentalis), dual mycorrhizal (R. irregularis and Scleroderma sp.), and non-mycorrhizal (NM) seedlings were monitored following two pulses of P. The ECM and A. occidentalis associations significantly enhanced the shoot P content of jarrah plants growing under P-deficient conditions. In addition, S. calospora, A. occidentalis, and Scleroderma sp. all stimulated plant growth significantly. All inoculated plants had significantly lower phytotoxicity symptoms compared to NM controls 7 days after addition of an elevated P dose (30 mg P kg−1 soil). Following exposure to toxicity-inducing levels of P, the shoot P concentration was significantly lower in R. irregularis-inoculated and dually inoculated plants compared to NM controls. Although all inoculated plants had reduced toxicity symptoms and there was a positive linear relationship between rank and shoot P concentration, the protective effect was not necessarily explained by the type of fungal association or the extent of mycorrhizal colonization.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Most terrestrial plants form mutually beneficial symbioses with specific soil-borne fungi known as mycorrhiza. In a typical mycorrhizal association, fungal hyphae colonize plant roots, explore the soil beyond the rhizosphere and provide host plants with nutrients that might be chemically or physically inaccessible to root systems. Here, we combined nutritional, radioisotopic (33P) and genetic approaches to describe a plant growth promoting symbiosis between the basidiomycete fungus Austroboletus occidentalis and jarrah (Eucalyptus marginata), which has quite different characteristics. We show that the fungal partner does not colonize plant roots; hyphae are localized to the rhizosphere soil and vicinity and consequently do not transfer nutrients located beyond the rhizosphere. Transcript profiling of two high-affinity phosphate (Pi) transporter genes (EmPHT1;1 and EmPHT1;2) and hyphal-mediated 33Pi uptake suggest that the Pi uptake shifts from an epidermal to a hyphal pathway in ectomycorrhizal plants (Scleroderma sp.), similar to arbuscular mycorrhizal symbioses, whereas A. occidentalis benefits its host indirectly. The enhanced rhizosphere carboxylates are linked to growth and nutritional benefits in the novel symbiosis. This work is a starting point for detailed mechanistic studies on other basidiomycete–woody plant relationships, where a continuum between heterotrophic rhizosphere fungi and plant beneficial symbioses is likely to exist.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Jarrah (Eucalyptus marginata Donn ex Sm.) plants, like many other eucalypts, can form symbiotic associations with both arbuscular mycorrhizal (AM) and ectomycorrhizal (ECM) fungi. To study this tripartite relationship we developed a novel nurse-pot system to allow us to investigate the extent and temporal colonisation dynamics of jarrah by two AM species (Rhizophagus irregularis (Błaszk., Wubet, Renker & Buscot) C. Walker & A. Schüßler comb. nov. and Scutellospora calospora Nicol. & Gerd.) and two putative ECM species (Austroboletus occidentalis Watling & N.M. Greg. and Scleroderma sp.) and their potential effects on jarrah growth and nutrition. Our nurse-pot system, using jarrah as both the nurse plant and test plant, was developed to establish extraradical hyphal networks of both AM and ECM fungi that act as single or dual inoculum for test plants. Mycorrhizal colonisation was described and quantified, and growth and nutritional effects measured and analysed. Mycorrhizal colonisation increased with time for the test seedlings exposed to hyphae networks from S. calospora and Scleroderma sp. The nurse-pot system was effective at initiating colonisation of functioning AM or (putative) ECM systems separately but the ECM symbiosis was inhibited where a dual AM + ECM inoculum (R. irregularis and Scleroderma sp.) was present. The presence of S. calospora, A. occidentalis and Scleroderma sp. individually significantly increased the shoot biomass of seedlings compared with non-mycorrhizal controls. The two AM isolates had different physiological effects on jarrah plants. S. calospora improved growth and micronutrient uptake of jarrah seedlings whereas no positive response was observed with R. irregularis. In addition, as an interesting observation, the non-responsive AM fungus R. irregularis suppressed the ECM symbiosis in dually inoculated plants where ECM structures, positive growth response and nutritional effects were absent. When inoculated individually, ECM isolates dominated the growth response and uptake of P and other nutrients in this dual symbiotic plant. Despite the positive growth response in the A. occidentalis treatment, ECM structures were not observed in either nurse or test seedlings. From the effects of A. occidentalis on jarrah we hypothesise that this fungus forms a functional mycorrhizal-type partnership even without forming archetypal structures in and on the root

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the Western Australian wheatbelt, the restoration of native eucalypt forests for managing degraded agricultural landscapes is a critical part of managing dryland salinity and rebuilding biodiversity. Such reforestation will also sequester carbon. Whereas most investigative emphasis has been on carbon stored in biomass, the effects of reforestation on soil organic carbon (SOC) stores and fertility are not known. Two 26 year old reforestation experiments with four Eucalyptus species (E. cladocalyx var nana, E. occidentalis, E. sargentii and E. wandoo) were compared with agricultural sites (Field). SOC stores (to 0.3 m depth) ranged between 33 and 55 Mg ha−1, with no statistically significant differences between tree species and adjacent farmland. Farming comprised crop and pasture rotations. In contrast, the reforested plots contained additional carbon in the tree biomass (23–60 Mg ha−1) and litter (19–34 Mg ha−1), with the greatest litter accumulation associated with E. sargentii. Litter represented between 29 and 56% of the biomass carbon and the protection or utilization of this litter in fire-prone, semi-arid farmland will be an important component of carbon management. Exch-Na and Exch-Mg accumulated under E. sargentii and E. occidentalis at one site. The results raise questions about the conclusions of SOC sequestration studies following reforestation based on limited sampling and reiterate the importance of considering litter in reforestation carbon accounts.